A distance measure for heterogeneity using genome scale metabolic networks

Onderzoeksoutput: Bijdrage aan congresPosterAcademic

Samenvatting

Physiological differences in the aging process are inherently present in a population, and increase with age, affecting the risk of developing disabilities and age-related diseases [1]. Patient-Derived Genome-Scale Metabolic Models (PD-GSMM) are built from human GSMM and experimental data, mostly transcriptomics and proteomics, belonging to single individuals. Personalized genome scale models have recently been used to plan individualized anti-cancer therapies [2], and to address the variability among cancer patients, identifying key genes involved in tumour growth [3]. Despite their success in cancer metabolism, is still not clear the extent to which PD-GSMs are representations of individual metabolic features in physiological conditions, and how successful such models are in capturing inter-individual heterogeneity when dealing with subtler phenotypes such as ageing. Starting from microarray datasets of younger and older adults’ skeletal muscle gene expression, we developed the first collection of patient-derived genome scale metabolic models of ageing individuals' myocytes, and used a data science approach to define a distance metric and assess the variability between metabolic models. This research is part of the PANINI project (Physical Activity and Nutrition INfluences in Aging), and has received funding from the European Union’s Horizon2020 programme, under the Marie Sklodowska-Curie grant agreement 675003.
Originele taal-2Engels
StatusGepubliceerd - 14 okt 2018
Evenement5th Conference on Constraint-Based Reconstruction and Analysis (COBRA 2018) - Sheraton, Seattle, Verenigde Staten van Amerika
Duur: 14 okt 201816 okt 2018
https://www.aiche.org/sbe/conferences/conference-on-constraint-based-reconstruction-and-analysis-cobra/2018

Congres

Congres5th Conference on Constraint-Based Reconstruction and Analysis (COBRA 2018)
Verkorte titelCOBRA 2018
LandVerenigde Staten van Amerika
StadSeattle
Periode14/10/1816/10/18
Internet adres

Vingerafdruk Duik in de onderzoeksthema's van 'A distance measure for heterogeneity using genome scale metabolic networks'. Samen vormen ze een unieke vingerafdruk.

  • Citeer dit

    Cabbia, A., Hilbers, P. A. J., & van Riel, N. A. W. (2018). A distance measure for heterogeneity using genome scale metabolic networks. Postersessie gepresenteerd op 5th Conference on Constraint-Based Reconstruction and Analysis (COBRA 2018), Seattle, Verenigde Staten van Amerika.