A dissipativity–based framework for analyzing stability of predictive controllers

Mircea Lazar (Corresponding author)

Onderzoeksoutput: Bijdrage aan tijdschriftCongresartikelpeer review

6 Citaten (Scopus)
113 Downloads (Pure)

Samenvatting

Stabilizing conditions for nonlinear predictive control typically rely on standard Lyapunov functions and thus require a monotonically decreasing cost function. These conditions cannot certify stability of predictive controllers in the presence of non–monotonic cost functions. In this paper we develop new dissipativity–based stabilizing conditions for nonlinear predictive control that allow for non–monotonic cost functions. Firstly, we establish that dissipation inequalities with a cyclically negative supply imply asymptotic stability. Secondly, we show that closed–loop trajectories generated by predictive control satisfy a fundamental dissipation inequality. This enables dissipativity–based stabilizing conditions that do not require a special terminal cost and apply to both model–based and data–driven predictive control algorithms.

Originele taal-2Engels
Pagina's (van-tot)159-165
Aantal pagina's7
TijdschriftIFAC-PapersOnLine
Volume54
Nummer van het tijdschrift6
DOI's
StatusGepubliceerd - 1 jul. 2021
Evenement7th IFAC Conference on Nonlinear Model Predictive Control, NMPC 2021 - Bratislava, Slovakije
Duur: 11 jul. 202114 jul. 2021

Bibliografische nota

Publisher Copyright:
Copyright © 2021 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0)

Vingerafdruk

Duik in de onderzoeksthema's van 'A dissipativity–based framework for analyzing stability of predictive controllers'. Samen vormen ze een unieke vingerafdruk.

Citeer dit