A differential-geometric look at the Jacobi-Davidson framework

P.A. Absil, M.E. Hochstenbach

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureHoofdstukAcademic

Samenvatting

The problem of computing a p-dimensional invariant subspace of a symmetric positive-definite matrix pencil of dimension n is interpreted as computing a zero of a tangent vector field on the Grassmann manifold of p-planes in Rn. The theory of Newton’s method on manifolds is applied to this problem, and the resulting Newton equations are interpreted as block versions of the Jacobi–Davidson correction equation for the generalized eigenvalue problem.
Originele taal-2Engels
TitelMathematical system theory : Festschrift in honor of Uwe Helmke on the occasion of his sixtieth birthday
RedacteurenK. Hüper, J. Trumpf
UitgeverijCreateSpace
Pagina's11-21
ISBN van geprinte versie978-1470044008
StatusGepubliceerd - 2013

Vingerafdruk

Duik in de onderzoeksthema's van 'A differential-geometric look at the Jacobi-Davidson framework'. Samen vormen ze een unieke vingerafdruk.

Citeer dit