Samenvatting
Electrohydrodynamic jet printing (e-jet printing) is a nascent additive manufacturing process most notable for extremely high resolution printing and having a vast portfolio of printable materials. These capabilities make e-jet printing promising for applications such as custom electronics and biotechnology fabrication. However, reliably fulfilling e-jet printing’s potential for high resolution requires delicate control of the volume deposited by each jet. Such control is made difficult by a lack of models that both capture the dynamics of volume deposition and are compatible with the control schemes relevant to e-jet printing. This work delivers such a model. Specifically, this work introduces a definition of “droplet volume” as a dynamically evolving variable rather than a static variable, and uses this definition along with analysis of high speed microscope videos to develop a hybrid dynamical system model of droplet volume evolution. This model is validated with experimental data, which involves the contribution of a novel technique for extracting consistent droplet volume measurements from videos.
Originele taal-2 | Engels |
---|---|
Aantal pagina's | 10 |
DOI's | |
Status | Gepubliceerd - 18 jan. 2021 |
Evenement | ASME 2020 Dynamic Systems and Control Conference (DSCC 2020) - Virtual, Online Duur: 5 okt. 2020 → 7 okt. 2020 https://event.asme.org/DSCC |
Congres
Congres | ASME 2020 Dynamic Systems and Control Conference (DSCC 2020) |
---|---|
Verkorte titel | DSCC 2020 |
Periode | 5/10/20 → 7/10/20 |
Internet adres |