A constructive proof of the Peter-Weyl theorem

T. Coquand, B.A.W. Spitters

    Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

    3 Citaten (Scopus)

    Samenvatting

    We present a new and constructive proof of the Peter-Weyl theorem on the representations of compact groups. We use the Gelfand representation theorem for commutative C*-algebras to give a proof which may be seen as a direct generalization of Burnside's algorithm [3]. This algorithm computes the characters of a finite group. We use this proof as a basis for a constructive proof in the style of Bishop. In fact, the present theory of compact groups may be seen as a natural continuation in the line of Bishop's work on locally compact, but Abelian, groups [2].
    Originele taal-2Engels
    Pagina's (van-tot)351-359
    TijdschriftMathematical Logic Quarterly
    Volume51
    Nummer van het tijdschrift4
    DOI's
    StatusGepubliceerd - 2005

    Vingerafdruk Duik in de onderzoeksthema's van 'A constructive proof of the Peter-Weyl theorem'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit