A construction of generalized eigenprojections based on geometric measure theory

S.J.L. Eijndhoven, van

Onderzoeksoutput: Boek/rapportRapportAcademic

20 Downloads (Pure)

Samenvatting

Let M denote a $\sigma$-compact locally compact metric space which satisfies certain geometrical conditions. Then for each $\sigma$-additive projection valued measure P on M there can be constructed a "canonical" Radon-Nikodym derivative $\Pi: \alpha \mapsto \pi_\alpha$, $\alpha \in M$, with respect to a suitable basic measure $\rho$on M. The family $(\Pi_\alpha)_{\alpha \in M}$ consists of generalized eigenprojections related to the commutative von Neumann algebra generated by the projections $P(\Delta)$, $\Delta$ a Borel set of M.
Originele taal-2Engels
Plaats van productieEindhoven
UitgeverijTechnische Hogeschool Eindhoven
Aantal pagina's17
StatusGepubliceerd - 1985

Publicatie series

NaamMemorandum COSOR
Volume8509
ISSN van geprinte versie0926-4493

Vingerafdruk Duik in de onderzoeksthema's van 'A construction of generalized eigenprojections based on geometric measure theory'. Samen vormen ze een unieke vingerafdruk.

Citeer dit