A composite methodology for supporting collaboration pattern discovery via semantic enrichment and multidimensional analysis.

Alfredo Cuzzocrea, Claudia Diamantini, Laura Genga, Domenico Potena, Emanuele Storti

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

4 Citaten (Scopus)

Samenvatting

Classical process discovery approaches usually investigate logs generated by processes in order to mine and discovery corresponding process schemas. When the collaboration processes case is addressed, such approaches turn to be poorly effective, due to the fact that: (i) logs of collaboration processes are usually stored in heterogeneous data storages which also expose different data types; (ii) it is not easy and direct to derive a common analysis model from such logs. As a consequence, classical methodologies usually fail. In order to fulfill this gap, in this paper we describe a composite methodology that combines semantics-based techniques and multidimensional analysis paradigms to support effective and efficient collaboration process discovery from log data.
Originele taal-2Engels
Titel2014 6th International Conference of Soft Computing and Pattern Recognition (SoCPaR)
UitgeverijIEEE Press
Pagina's459-464
ISBN van elektronische versie978-1-4799-5934-1
DOI's
StatusGepubliceerd - 2014
Extern gepubliceerdJa
Evenement 6th International Conference of Soft Computing and Pattern Recognition (SoCPaR)
- Ramada Plaza hotel, Tunis, Tunesië
Duur: 11 aug. 201414 aug. 2014
http://www.mirlabs.org/socpar14/

Congres

Congres 6th International Conference of Soft Computing and Pattern Recognition (SoCPaR)
Land/RegioTunesië
StadTunis
Periode11/08/1414/08/14
Internet adres

Vingerafdruk

Duik in de onderzoeksthema's van 'A composite methodology for supporting collaboration pattern discovery via semantic enrichment and multidimensional analysis.'. Samen vormen ze een unieke vingerafdruk.

Citeer dit