A Comparison of Model-Based and Model-Free Offline Reinforcement Learning Methods for Electric Vehicle Smart Charging Optimization

Hicham Rahali (Corresponderende auteur), Andrey Poddubnyy, Phuong H. Nguyen

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

Samenvatting

The rise in electric vehicles (EVs) deployed is increasing peak power loads on grids, causing stability issues and higher expansion costs. Smart charging solutions aim to balance EV charging by integrating data from EV stations, building
loads, and solar power. Classical Model Predictive Controllers (MPCs) can address constraints but struggle with non-linearity in real system dynamics. Reinforcement learning (RL) excels at managing uncertainties such as fluctuating demand and complex dynamic interactions but struggles with constraint satisfaction. Therefore, this research proposes a novel model-based RL (RL-MPC) approach using Behavioral Cloning (BC) to predict the charging strategy, where MPC is used as a policy estimator to constrain the RL solution. A model-free Deep RL (DRL) actor-critic model with Proximal Policy Optimization (PPO) was applied to serve as a basis for comparison. Both approaches effectively optimized EV charging operations, yielding consistent savings potential of approximately 20% and adaptability across various operational scenarios.
Originele taal-2Engels
Titel2025 IEEE PES General Meeting
UitgeverijInstitute of Electrical and Electronics Engineers
StatusGeaccepteerd/In druk - jul. 2025
Evenement2025 IEEE Power & Energy Society General Meeting, PESGM 2025 - Austin, Verenigde Staten van Amerika
Duur: 27 jul. 202531 jul. 2025

Congres

Congres2025 IEEE Power & Energy Society General Meeting, PESGM 2025
Verkorte titelPESGM 2025
Land/RegioVerenigde Staten van Amerika
StadAustin
Periode27/07/2531/07/25

Vingerafdruk

Duik in de onderzoeksthema's van 'A Comparison of Model-Based and Model-Free Offline Reinforcement Learning Methods for Electric Vehicle Smart Charging Optimization'. Samen vormen ze een unieke vingerafdruk.

Citeer dit