A CAD System for Real-Time Characterization of Neoplasia in Barrett's Esophagus NBI Videos

Carolus H.J. Kusters, Tim G.W. Boers, Jelmer B. Jukema, Martijn R. Jong, Kiki N. Fockens, Albert J. de Groof, Jacques J. Bergman, Fons van der Sommen, Peter H.N. de With

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

2 Citaten (Scopus)
7 Downloads (Pure)

Samenvatting

Barrett’s Esophagus (BE) is a well-known precursor for Esophageal Adenocarcinoma (EAC). Endoscopic detection and diagnosis
of early BE neoplasia is performed in two steps: primary detection of a
suspected lesion in overview and a targeted and detailed inspection of the
specific area using Narrow-Band Imaging (NBI). Despite the improved
visualization of tissue by NBI and clinical classification systems, endoscopists have difficulties with correct characterization of the imagery.
Computer-aided Diagnosis (CADx) may assist endoscopists in the classification of abnormalities in NBI imagery. We propose an endoscopydriven pre-trained deep learning-based CADx, for the characterization of NBI imagery of BE. We evaluate the performance of the algorithm on images as well as on videos, for which we use several post-hoc and real-time video analysis methods. The proposed real-time methods outperform the post-hoc methods on average by 1.2% and 2.3% for accuracy and specificity, respectively. The obtained results show promising methods towards real-time endoscopic video analysis and identifies steps for
further development.
Originele taal-2Engels
TitelCancer Prevention Through Early Detection - 1st International Workshop, CaPTion 2022, Held in Conjunction with MICCAI 2022, Proceedings
RedacteurenSharib Ali, Fons van der Sommen, Maureen van Eijnatten, Iris Kolenbrander, Bartłomiej Władysław Papież, Yueming Jin
UitgeverijSpringer
Hoofdstuk9
Pagina's89-98
Aantal pagina's10
ISBN van geprinte versie978-3-031-17978-5
DOI's
StatusGepubliceerd - 30 sep. 2022
Evenement25th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2022 - Singapore, Singapore
Duur: 18 sep. 202222 sep. 2022
Congresnummer: 25

Publicatie series

NaamLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume13581 LNCS
ISSN van geprinte versie0302-9743
ISSN van elektronische versie1611-3349

Congres

Congres25th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2022
Verkorte titelMICCAI 2022
Land/RegioSingapore
StadSingapore
Periode18/09/2222/09/22

Vingerafdruk

Duik in de onderzoeksthema's van 'A CAD System for Real-Time Characterization of Neoplasia in Barrett's Esophagus NBI Videos'. Samen vormen ze een unieke vingerafdruk.

Citeer dit