A bound for the p-domination number of a graph in terms of its eigenvalue multiplicities

A. Abiad (Corresponding author), S. Akbari, M.H. Fakharan, A. Mehdizadeh

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

57 Downloads (Pure)

Samenvatting

Let G be a connected graph of order n with domination number γ(G). Wang, Yan, Fang, Geng and Tian [Linear Algebra Appl. 607 (2020), 307-318] showed that for any Laplacian eigenvalue λ of G with multiplicity mG(λ), it holds that γ(G)≤n−mG(λ). Using techniques from the theory of star sets, in this work we prove that the same bound holds when λ is an arbitrary adjacency eigenvalue of a non-regular graph, and we characterize the cases of equality. Moreover, we show a result that gives a relationship between start sets and the p-domination number, and we apply it to extend the aforementioned spectral bound to the p-domination number using the adjacency and Laplacian eigenvalue multiplicities.

Originele taal-2Engels
Pagina's (van-tot)319-330
Aantal pagina's12
TijdschriftLinear Algebra and Its Applications
Volume658
DOI's
StatusGepubliceerd - 1 feb. 2023

Bibliografische nota

Funding Information:
S. Akbari is partially funded by the Iran National Science Foundation (INSF), grant 96004167 .

Funding Information:
A. Abiad is partially funded by the Fonds Wetenschappelijk Onderzoek (FWO), grant 1285921N .

Vingerafdruk

Duik in de onderzoeksthema's van 'A bound for the p-domination number of a graph in terms of its eigenvalue multiplicities'. Samen vormen ze een unieke vingerafdruk.

Citeer dit