A Boolean approach to linear prediction for signaling network modeling

F. Eduati, A. Corradin, B. Di Camillo, G. Toffolo

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

14 Citaten (Scopus)

Samenvatting

The task of the DREAM4 (Dialogue for Reverse Engineering Assessments and Methods) "Predictive signaling network modeling" challenge was to develop a method that, from single-stimulus/inhibitor data, reconstructs a cause-effect network to be used to predict the protein activity level in multi-stimulus/inhibitor experimental conditions. The method presented in this paper, one of the best performing in this challenge, consists of 3 steps: 1. Boolean tables are inferred from single-stimulus/inhibitor data to classify whether a particular combination of stimulus and inhibitor is affecting the protein. 2. A cause-effect network is reconstructed starting from these tables. 3. Training data are linearly combined according to rules inferred from the reconstructed network. This method, although simple, permits one to achieve a good performance providing reasonable predictions based on a reconstructed network compatible with knowledge from the literature. It can be potentially used to predict how signaling pathways are affected by different ligands and how this response is altered by diseases.

Originele taal-2Engels
TijdschriftPLoS ONE
Volume5
Nummer van het tijdschrift9
DOI's
StatusGepubliceerd - 16 sep 2010
Extern gepubliceerdJa

Vingerafdruk

Duik in de onderzoeksthema's van 'A Boolean approach to linear prediction for signaling network modeling'. Samen vormen ze een unieke vingerafdruk.

Citeer dit