A bilinear H2 model order reduction approach to linear parameter-varying systems

Peter Benner, X. Cao (Corresponding author), W.H.A. Schilders

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

7 Citaten (Scopus)
25 Downloads (Pure)

Samenvatting

This paper focuses on the model reduction problem for a special class of linear parameter-varying systems. This kind of systems can be reformulated as bilinear dynamical systems. Based on the bilinear system theory, we give a definition of the H2 norm in the generalized frequency domain. Then a model reduction method is proposed based on the gradient descent on the Grassmann manifold. The merit of the method is that by utilizing the gradient flow analysis, the algorithm is guaranteed to converge, and further speedup of the convergence rate can be achieved as well. Two numerical examples are tested to demonstrate the proposed method.
Originele taal-2Engels
Pagina's (van-tot)2241–2271
Aantal pagina's31
TijdschriftAdvances in Computational Mathematics
Volume45
Nummer van het tijdschrift5-6
Vroegere onlinedatum18 apr 2019
DOI's
StatusGepubliceerd - 1 dec 2019

Vingerafdruk Duik in de onderzoeksthema's van 'A bilinear H2 model order reduction approach to linear parameter-varying systems'. Samen vormen ze een unieke vingerafdruk.

Citeer dit