A Bijection for the Evolution of B-Trees

Fabian Burghart, Stephan Wagner

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

3 Downloads (Pure)

Samenvatting

A B-tree is a type of search tree where every node (except possibly for the root) contains between m and 2m keys for some positive integer m, and all leaves have the same distance to the root. We study sequences of B-trees that can arise from successively inserting keys, and in particular present a bijection between such sequences (which we call histories) and a special type of increasing trees. We describe the set of permutations for the keys that belong to a given history, and also show how to use this bijection to analyse statistics associated with B-trees.

Originele taal-2Engels
Titel35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024)
RedacteurenCécile Mailler, Sebastian Wild
UitgeverijSchloss Dagstuhl - Leibniz-Zentrum für Informatik
Hoofdstuk10
Pagina's10:1-10:15
Aantal pagina's15
ISBN van elektronische versie978-3-95977-329-4
DOI's
StatusGepubliceerd - jul. 2024
Evenement35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024) - University of Bath, Bath, Verenigd Koninkrijk
Duur: 17 jun. 202421 jun. 2024
Congresnummer: 35

Publicatie series

NaamLeibniz International Proceedings in Informatics (LIPIcs)
Volume302

Congres

Congres35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024)
Verkorte titelAofA
Land/RegioVerenigd Koninkrijk
StadBath
Periode17/06/2421/06/24

Financiering

Fabian Burghart: F. Burghart has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sk\u0142odowska-Curie Grant Agreement No 101034253. Stephan Wagner: Supported by the Swedish research council (VR), grant 2022-04030.

Vingerafdruk

Duik in de onderzoeksthema's van 'A Bijection for the Evolution of B-Trees'. Samen vormen ze een unieke vingerafdruk.

Citeer dit