A Bayesian optimization framework for the automatic tuning of MPC-based shared controllers

Anne van der Horst, Bas Meere, Dinesh Krishnamoorthy, Saray Bakker, Bram van de Vrande, Henry Stoutjesdijk, Marco A. Alsonso, Elena Torta

Onderzoeksoutput: WerkdocumentPreprintAcademicpeer review

74 Downloads (Pure)

Samenvatting

This paper presents a Bayesian optimization framework for the automatic tuning of shared controllers which are defined as a Model Predictive Control (MPC) problem. The proposed framework includes the design of performance metrics as well as the representation of user inputs for simulation-based optimization. The framework is applied to the optimization of a shared controller for an Image Guided Therapy robot. VR-based user experiments confirm the increase in performance of the automatically tuned MPC shared controller with respect to a hand-tuned baseline version as well as its generalization ability.
Originele taal-2Engels
UitgeverarXiv.org
Aantal pagina's7
Volume2311.01133
DOI's
StatusGepubliceerd - 2 nov. 2024

Trefwoorden

  • cs.RO

Vingerafdruk

Duik in de onderzoeksthema's van 'A Bayesian optimization framework for the automatic tuning of MPC-based shared controllers'. Samen vormen ze een unieke vingerafdruk.

Citeer dit