Samenvatting
To ensure safe and smooth human-robot interaction, autonomous robots operating around people often necessitate 3D human body orientation and bounding box estimation. An orientation of the human is generally defined by the motion around the yaw-axis. However, human-robot interaction tasks may necessitate different orientation definitions depending on the application, for instance an orientation can be defined using shoulder and hip joints. A 3D skeleton map, consisting of multiple 3D body joint coordinates, enables defining an orientation in diverse ways. However, estimating 3D skeleton maps from monocular images is computationally expensive. Existing approaches using large neural network models are impractical for real-time robot operation due to the limited onboard computation and power resources. In this paper, we automatically label the 3D human body orientation from 3D skeleton maps, and present a deep learning method to estimate 3D orientation and bounding box. We achieve this by leveraging a larger neural perception model to automatically generate an annotated training dataset, using a functional mapping from 3D skeleton joint coordinates to the defined orientation and bounding boxes. Experimental results demonstrate that our perception model estimates 3D human body orientation with an average error of 10.94
around the yaw-axis and the 3D bounding box with errors of 19.15% in width, 8.71% in length, and 4.71% in height compared to the annotator’s output, while doubling the FPS rate.
around the yaw-axis and the 3D bounding box with errors of 19.15% in width, 8.71% in length, and 4.71% in height compared to the annotator’s output, while doubling the FPS rate.
Originele taal-2 | Engels |
---|---|
Titel | Human-Friendly Robotics 2024 |
Subtitel | HFR: 17th International Workshop on Human-Friendly Robotics |
Redacteuren | Antonio Paolillo, Allessandro Giusti, Gabriele Abbate |
Plaats van productie | Cham |
Uitgeverij | Springer |
Pagina's | 182-196 |
Aantal pagina's | 15 |
ISBN van elektronische versie | 978-3-031-81688-8 |
ISBN van geprinte versie | 978-3-031-81687-1, 978-3-031-81793-9 |
DOI's | |
Status | Gepubliceerd - 26 feb. 2025 |
Evenement | 17th International Workshop on Human-Friendly Robotics, HFR 2024 - Lugano, Zwitserland Duur: 30 sep. 2024 → 1 okt. 2024 |
Publicatie series
Naam | Springer Proceedings in Advanced Robotics (SPAR) |
---|---|
Volume | 35 |
ISSN van geprinte versie | 2511-1256 |
ISSN van elektronische versie | 2511-1264 |
Congres
Congres | 17th International Workshop on Human-Friendly Robotics, HFR 2024 |
---|---|
Verkorte titel | HFR 2024 |
Land/Regio | Zwitserland |
Stad | Lugano |
Periode | 30/09/24 → 1/10/24 |