2-designs having an intersection number $k-n$

H.J. Beker, W.H. Haemers

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

20 Citaten (Scopus)

Samenvatting

In this paper we examine 2-designs having an intersection number k - n. This intersection number gives rise to an equivalence relation on the blocks of the design. Conditions on the sizes of these equivalence classes and some properties of any further intersection numbers are obtained. If such a design has at most three intersection numbers then it gives rise to a strongly regular graph. This leads to a result on the embedding of quasi-residual designs. As as example a quasi-residual 2-(56, 12, 3) design is constructed and embedded in a symmetric 2-(71, 15, 3) design.
Originele taal-2Engels
Pagina's (van-tot)64-81
Aantal pagina's18
TijdschriftJournal of Combinatorial Theory, Series A
Volume28
Nummer van het tijdschrift1
DOI's
StatusGepubliceerd - 1980

Vingerafdruk

Duik in de onderzoeksthema's van '2-designs having an intersection number $k-n$'. Samen vormen ze een unieke vingerafdruk.

Citeer dit