ℋ Optimal Estimation for Linear Coupled PDE Systems

Amritam Das, Sachin Shivakumar, Siep Weiland, Matthew M. Peet

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

4 Citaten (Scopus)

Samenvatting

In this work, we present a Linear Matrix Inequality (LMI) based method to synthesize an optimal ℋ estimator for a large class of linear coupled partial differential equations (PDEs) utilizing only finite dimensional measurements. Our approach extends the newly developed framework for representing and analyzing distributed parameter systems using operators on the space of square integrable functions that are equipped with multipliers and kernels of semi-separable class. We show that by redefining the state, the PDEs can be represented using operators that embed the boundary conditions and input-output relations explicitly. The optimal estimator synthesis problem is formulated as a convex optimization subject to LMIs that require no approximation or discretization.

Originele taal-2Engels
Titel2019 IEEE 58th Conference on Decision and Control, CDC 2019
UitgeverijInstitute of Electrical and Electronics Engineers
Pagina's262-267
Aantal pagina's6
ISBN van elektronische versie9781728113982
DOI's
StatusGepubliceerd - dec 2019
Evenement58th IEEE Conference on Decision and Control (CDC 2019) - Nice, Frankrijk
Duur: 11 dec 201913 dec 2019
https://cdc2019.ieeecss.org/

Congres

Congres58th IEEE Conference on Decision and Control (CDC 2019)
Verkorte titelCDC 2019
LandFrankrijk
StadNice
Periode11/12/1913/12/19
Internet adres

Vingerafdruk Duik in de onderzoeksthema's van 'ℋ Optimal Estimation for Linear Coupled PDE Systems'. Samen vormen ze een unieke vingerafdruk.

Citeer dit