Als u wijzigingen in Pure hebt gemaakt, zullen deze hier binnenkort zichtbaar zijn.

Persoonlijk profiel

Quote

I am incurably curious!

Research profile

Wouter Duivesteijn is an Assistant Professor in Data Mining at the Technische Universiteit Eindhoven. Currently, his research interests revolve around SD and EMM in a wider scope. He is interested in combining concepts from Subgroup Discovery and ROC Analysis as well as SD and EMM on streams. Both SD and EMM attempt to find small portions of the data where the observed behaviour is notably different from that of the database as a whole. Initially this can take the relatively simple form of extracting a meaningful flat table representation of features from the stream, and observing the results that can be obtained by running out-of-the-box SD and EMM algorithms on that table. Wouter aims to eventually develop a full-fledged algorithm that allows to mine for interesting subgroups directly on the data stream.

Academic background

Wouter Duivesteijn obtained his PhD in Computer Science from Leiden University. He also holds MScs in Applied Computing Science and Mathematical Sciences from Utrecht University. Before joining TU/e, Wouter worked on the FORSIED project (FORmalising Subjective Interestingness in Exploratory Data mining) at the University of Ghent and the University of Bristol to. Before that, he worked as a Wissenschaftlicher Mitarbeiter at the Collaborative Research Center SFB 876 at the Technische Universität Dortmund and at the Data Mining group of LIACS, Leiden University.

Wouter is chairman of the board of student association A–Eskwadraat for Mathematics, Physics, Computer Science and Information Science, as well as a member of the science faculty council, mathematics department council, mathematics department board of education and mathematics education council at Utrecht University. He has acted as Conference chair of Benelearn 2017 and workshop chair of Silver 2012, collocated with ECML PKDD in Bristol, UK. He has been a program committee member of a wide range of events and reviewed for numerous leading journals.

Vingerafdruk Duik in de onderzoeksthema's waar Wouter Duivesteijn actief is. Deze onderwerplabels komen voort uit het werk van deze persoon. Samen vormen ze een unieke vingerafdruk.

Adaptive boosting Engineering en materiaalwetenschappen
Mining Rekenkunde
Interpretability Rekenkunde
Data mining Engineering en materiaalwetenschappen
Clustering algorithms Engineering en materiaalwetenschappen
Labels Engineering en materiaalwetenschappen
Ensemble Rekenkunde
Students Engineering en materiaalwetenschappen

Netwerk Recente externe samenwerking op landenniveau. Duik in de details door op de stippen te klikken.

Onderzoeksoutput 2017 2020

5 Citaties (Scopus)

Exceptionally monotone models : the rank correlation model class for Exceptional Model Mining

Downar, L. & Duivesteijn, W., 2017, In : Knowledge and Information Systems. 51, 2, blz. 369-394

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

Computational complexity

BoostEMM : Transparent boosting using exceptional model mining

van der Zon, S. B., Zeev Ben Mordehay, O., Vrijdag, T. S., van Ipenburg, W., Veldsink, J., Duivesteijn, W. & Pechenizkiy, M., 2017, Proceedings of the Second Workshop on MIning DAta for financial applicationS (MIDAS 2017), 18 September 2017, Skopje, Macedonia . Bordino, I., Caldarelli, G., Fumarola, F., Gullo, F. & Squartini, T. (redactie). blz. 5-16 12 blz. (CEUR Workshop Proceedings; vol. 1941).

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

Open Access
Bestand
Adaptive boosting
Transparency

Exceptional spatio-temporal behavior mining through Bayesian non-parametric modeling

Du, X., Pei, Y., Duivesteijn, W. & Pechenizkiy, M., 2020, (Geaccepteerd/In druk) In : Data Mining and Knowledge Discovery.

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

Fairness in network representation by latent structural heterogeneity in observational data

Du, X., Pei, Y., Duivesteijn, W. & Pechenizkiy, M., 2020, (Geaccepteerd/In druk) Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI 2020).

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

Adversarial balancing-based representation learning for causal effect inference with observational data

Du, X., Sun, L., Duivesteijn, W., Nikolaev, A. & Pechenizkiy, M., 30 apr 2019, In : arXiv. 17 blz., 1904.13335v1.

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademic

Education
Experiments
Deep learning

Cursussen

Foundations of data mining

1/09/17 → …

Cursus

Responsible Data Science

1/09/19 → …

Cursus

Web analytics

1/09/1331/08/20

Cursus

Pers/media

2nd international workshop on learning over multiple contexts (LMCE 2015)

W. Duivesteijn

23/04/15

1 item van Media-aandacht

Pers / media: Vakinhoudelijk commentaar

Scriptie

Analysis and improvement of process models with respect to key performance indicators: a debt collection case study

Auteur: Syring, A., 28 mei 2018

Begeleider: de Leoni, M. (Afstudeerdocent 1), Schouten, M. (Externe persoon) (Externe coach), Duivesteijn, W. (Afstudeerdocent 2) & Türetken, O. (Afstudeerdocent 2)

Scriptie/masterproef: Master

Bestand

Association rule mining of student grades: a grammar guided genetic programming approach

Auteur: Giesbers, B., 31 okt 2016

Begeleider: Pechenizkiy, M. (Afstudeerdocent 1), Serebrenik, A. (Afstudeerdocent 2) & Duivesteijn, W. (Afstudeerdocent 2)

Scriptie/masterproef: Master

Bestand

Exceptional incidence distribution mining on a nationwide cancer registry: a descriptive approach

Auteur: Attanasio, C., 16 dec 2019

Begeleider: Duivesteijn, W. (Afstudeerdocent 1) & Buisman, H. J. (Externe coach)

Scriptie/masterproef: Master

Bestand

Exceptional model mining of convolutional neural networks

Auteur: van Strien, B., 29 apr 2019

Begeleider: Duivesteijn, W. (Afstudeerdocent 1)

Scriptie/masterproef: Master

Bestand

Mining exceptional descriptive patterns in attributed spatio-temporal datasets

Auteur: Scheerder, M., 29 apr 2019

Begeleider: Duivesteijn, W. (Afstudeerdocent 1), Duin, P. (Externe persoon) (Externe coach) & de Jonge, E. (Externe persoon) (Externe coach)

Scriptie/masterproef: Master

Bestand