• Bron: Scopus
20132022

Onderzoeksresultaten per jaar

Als u wijzigingen in Pure hebt gemaakt, zullen deze hier binnenkort zichtbaar zijn.

Persoonlijk profiel

Quote

"I aim at achieving better, faster, and more widely accessible (medical) imaging through the design of intelligent systems that efficiently learn how to optimally and autonomously sense, process, and interpret real-world signals."

Research profile

Ruud van Sloun is an Assistant Professor in the Signal Processing Systems group of the Electrical Engineering department at Eindhoven University of Technology (TU/e). He works on advanced sensing and signal processing algorithms, with a special focus on deep learning methods for image formation and reconstruction problems. He has a background in probabilistic signal processing for ultrasound-based cancer localization and exploiting signal structure and models to derive optimal estimators. After his PhD, this background has become intertwined with machine and deep learning, to develop powerful signal processing solutions that efficiently leverage both data and model-based signal structure. Applications span from ultrasound beamforming and image formation to clutter suppression and super-resolution imaging.
Van Sloun has contributed to over 40 journal publications and 4 patents. In 2019, he received a RUBICON grant on deep learning for next-gen ultrasound from The Netherlands Organization for Scientific Research (NWO), and in 2021 the Google Faculty Research award on model-based deep learning for imaging. 

Academic background

Ruud van Sloun studied Electrical Engineering at Eindhoven University of Technology (TU/e) where he received the MSc and PhD degrees (both cum laude) in 2014 and 2018, respectively. In January 2018, he joined TU/e as an Assistant Professor. Since then, he has been working on deep learning and signal processing for diagnostic (imaging) applications, spending a significant amount of time at foreign research institutes. Van Sloun also acts as a kickstart-AI fellow for Philips Research, where he works one day per week.

Affiliated with

Affiliated with

  • Philips Research

 

Partners in (semi-)industry

  • Philips Research
  • Onera

Expertise gerelateerd aan duurzame ontwikkelingsdoelstellingen van de VN

In 2015 stemden de VN-lidstaten in met 17 wereldwijde duurzame ontwikkelingsdoelstellingen (Sustainable Development Goals, SDG's) om armoede te beëindigen, de planeet te beschermen en voor iedereen welvaart te garanderen. Het werk van deze persoon draagt bij aan de volgende duurzame ontwikkelingsdoelstelling(en):

  • SDG 3 – Goede gezondheid en welzijn

Vingerafdruk

Verdiep u in de onderzoeksgebieden waarop Ruud J.G. van Sloun actief is. Deze onderwerplabels komen uit het werk van deze persoon. Samen vormen ze een unieke vingerafdruk.
  • 1 Soortgelijke profielen

Netwerk

Recente externe samenwerking op landen-/regioniveau. Duik in de details door op de stippen te klikken of