• Bron: Scopus
20102020

Onderzoeksresultaten per jaar

Als u wijzigingen in Pure hebt gemaakt, zullen deze hier binnenkort zichtbaar zijn.

Persoonlijk profiel

Academic background

Robert Peharz received his Master degree in Computer Engineering from Graz University of Technology (TU Graz), Austria (2010). From 2010-2015, he pursued his PhD studies at TU Graz, working on probabilistic graphcial models and sum-product networks, with applications to signal processing. From 2015-2017, he was postdoc at the Medical University of Graz, working on interdisciplinary approaches for early recognition of neural maldevelopment via behavioral neuroscience. He was postdoc in the Machine Learning Group (MLG) at the University of Cambridge from 2017-2018. He was Marie-Curie Individual Fellow at MLG Cambridge from 2018-2019. Robert joined Eindhoven University of Technology (TU/e) in November 2019 as an Assistant Professor in the Artificial Intelligence cluster.

Quote

Uncertainty Matters

Research profile

Robert Peharz is an Assistant Professor in the Artificial Intelligence cluster at Eindhoven University of Technology. Robert's work leverages probability as a principled language to represent and process uncertain knowledge. His main research activity is dedicated to develop powerful and expressive machine learning algorithms which are based on probabilistic principles. His particular research targets are probabilistic graphical models, tractable probabilistic models such as probabilistic circuits, and probabilistic deep learning. In his work, Robert aims to unite principled probabilistic modeling with the power of the entire machine learning toolbox.

Vingerafdruk

Verdiep u in de onderzoeksgebieden waarop Robert Peharz actief is. Deze onderwerplabels komen uit het werk van deze persoon. Samen vormen ze een unieke vingerafdruk.
  • 6 Soortgelijke profielen

Netwerk

Recente externe samenwerking op landenniveau. Duik in de details door op de stippen te klikken.
Als u wijzigingen in Pure hebt gemaakt, zullen deze hier binnenkort zichtbaar zijn.