Als u wijzigingen in Pure hebt gemaakt, zullen deze hier binnenkort zichtbaar zijn.

Persoonlijk profiel

Quote

“I am interested in the design and applications of reliable machine learning in industrial systems for optimizing the manufacturing and maintenance processes.”

Research profile

Mike Holenderski is an Assistant Professor at the Eindhoven University of Technology at the System Architecture and Networking group. His research focus is on, machine learning which has been shown to perform well in various domains, some- times even outperforming humans on tasks such as image classification. Usually, the data that the machine learning systems are trained and evaluated on are static and relatively clean. In reality, however, the data is often noisy, corrupted, partially missing and coming from dynamic environments which are changing over time.

Reliable machine learning aims at developing models which are robust to noise and missing data, and can detect and adapt to changes in the processes that they monitor and control. The relevant questions include: How can a system measure its own performance and detect when its predictions are not accurate, e.g. because the behavior of the monitored process has changed or because the input is very different from previous observations? How can it provide safe predictions when it cannot be certain about the accuracy? How can a system adapt to the changes in the environment or when being deployed in a new context? How can a machine learning agent deal with corrupt or missing data?

Academic background

Mike Holenderski received his PhD in 2012 on the topic of real-time systems. Since then he has been working on Machine Learning. His current interest is Reliable Machine Learning, where the goal is to perform machine learning tasks, such as failure prediction or wear estimation, using real industrial data which is often noisy, corrupted, partially missing or coming from dynamic environments which change over time. He is interested in putting the theory in practice, which he has been doing in collaborations with industry through various European and national projects.

Vingerafdruk Verdiep u in de onderzoeksgebieden waarop Mike J. Holenderski actief is. Deze onderwerplabels komen uit het werk van deze persoon. Samen vormen ze een unieke vingerafdruk.

  • 1 Soortgelijke profielen

Netwerk Recente externe samenwerking op landenniveau. Duik in de details door op de stippen te klikken.

Onderzoeksoutput

Anomaly detection for visual quality control of 3D-printed products

Tonnaer, L., Li, J., Osin, V., Holenderski, M. & Menkovski, V., 1 jul 2019, 2019 International Joint Conference on Neural Networks, IJCNN 2019. Piscataway: Institute of Electrical and Electronics Engineers, 8 blz. 8852372

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

  • 2 Downloads (Pure)

    Business drivers of a collaborative, proactive maintenance solution

    Jantunen, E., Akcay, A., Campos, J., Holenderski, M. J., Kotkansalo, A., Salokangas, R. & Sharma, P., 2019, The MANTIS Book: Cyber Physical System Based Proactive Collaborative Maintenance. River Publishers, blz. 7-35 29 blz. (River publishers series in automation, control and robotics).

    Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureHoofdstukAcademicpeer review

    Open Access
    Bestand
  • 1 Citaat (Scopus)
    135 Downloads (Pure)

    A formalization of computational trust

    Guven, C., Holenderski, M., Ozcelebi, T. & Lukkien, J., 16 jan 2018, Joint 13th CTTE and 10th CMI Conference on Internet of Things - Business Models, Users, and Networks. Piscataway: Institute of Electrical and Electronics Engineers, Vol. 2018-January. 8 blz. 8260936

    Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

  • 1 Citaat (Scopus)
    2 Downloads (Pure)

    Predicting machine failures from industrial time series data

    Jansen, F. J. M., Holenderski, M. J., Ozcelebi, T., Dam, P. & Tijsma, B., 2018, 2018 5th International Conference on Control, Decision and Information Technologies (CoDIT) . Piscataway: Institute of Electrical and Electronics Engineers, blz. 1091-1096 6 blz. 8394915

    Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

  • 2 Citaten (Scopus)
    1 Downloads (Pure)

    Using artificial neurons in evidence based trust computation

    Guven, C., Holenderski, M., Ozcelebi, T. & Lukkien, J., 5 sep 2018, Proceedings - 17th IEEE International Conference on Trust, Security and Privacy in Computing and Communications and 12th IEEE International Conference on Big Data Science and Engineering, Trustcom/BigDataSE 2018. Piscataway: Institute of Electrical and Electronics Engineers, blz. 1879-1884 6 blz. 8456153

    Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

  • 1 Downloads (Pure)

    Cursussen

    Data analytics for engineers

    1/09/17 → …

    Cursus

    Internet of things

    1/09/15 → …

    Cursus

    Scriptie

    Active learning in VAE latent space

    Auteur: Tonnaer, L., 25 sep 2017

    Begeleider: Menkovski, V. (Afstudeerdocent 1), Portegies, J. W. (Afstudeerdocent 2) & Holenderski, M. (Afstudeerdocent 2)

    Scriptie/masterproef: Master

    Bestand

    An access control platform based on blockchain

    Auteur: Galaz Garcia, L., 25 sep 2017

    Begeleider: Holenderski, M. (Afstudeerdocent 1) & Holenderski, L. (Externe persoon) (Afstudeerdocent 2)

    Scriptie/masterproef: Master

    Bestand

    A nearest neighbor based cold-deck imputation for X-ray tube wear estimation

    Auteur: Narayan, N., 27 nov 2017

    Begeleider: Holenderski, M. (Afstudeerdocent 1) & Gijsbers, J. (Externe persoon) (Externe coach)

    Scriptie/masterproef: Master

    Bestand

    Blockchain based smart contracts for business process automation

    Auteur: Kolhe, S., 26 feb 2018

    Begeleider: Holenderski, M. (Afstudeerdocent 1) & Sinitsyn, A. G. (Externe persoon) (Externe coach)

    Scriptie/masterproef: Master

    Bestand

    Content based CT retrieval for pulmonary nodules: deep metric learning based feature extraction

    Auteur: Aerts, T., 28 feb 2019

    Begeleider: Menkovski, V. (Afstudeerdocent 1), Holenderski, M. (Afstudeerdocent 2) & Veta, M. (Afstudeerdocent 2)

    Scriptie/masterproef: Master

    Bestand