• 675
    Citaties
20092024

Onderzoeksresultaten per jaar

Persoonlijk profiel

Quote

"Unsupervised online learning from event streams is essential for applications with limited domain knowledge and real time demands." 

Research profile

Marwan Hassani is leading a small research group on streaming process mining within the Process Analytic cluster. Marwan focuses in his research on online knowledge extraction from streaming event data and its applications in stream process mining. Marwan’s main interests are developing and applying unsupervised learning methods such as clustering, outlier detection and sequential pattern mining over streaming data. His main use case is optimizing customer journey and similar applications where scalable solutions are needed in an online manner and with limited availability of domain knowledge.

Academic background

Marwan Hassani has received a PhD in Computer Science in 2015 from RWTH Aachen University in Germany where he was a PhD candidate under the supervision of Thomas Seidl in the Data Management and Data Exploration Group. During his PhD, Marwan visited the School of Computing at Portsmouth University, UK. Marwan acted as a postdoctoral researcher at RWTH Aachen University from 2015 till July 2016. Since August 2016 he is an assistant professor in computer science at Eindhoven University of Technology TU/e where he is also leading the Customer Journey track of the Data Science Center Eindhoven (DSC/e). He has published over 65 scientific papers on Data Mining and Process Mining. Marwan has served in the program committees of major conferences and journals related to data mining, including ECML/PKDD, SDM, CIKM, KAIS, DAMI, JMLR. He has also co-chaired numerous scientific events on various data mining and process mining topics.  

Expertise gerelateerd aan duurzame ontwikkelingsdoelstellingen van de VN

In 2015 stemden de VN-lidstaten in met 17 wereldwijde duurzame ontwikkelingsdoelstellingen (Sustainable Development Goals, SDG's) om armoede te beëindigen, de planeet te beschermen en voor iedereen welvaart te garanderen. Het werk van deze persoon draagt bij aan de volgende duurzame ontwikkelingsdoelstelling(en):

  • SDG 3 – Goede gezondheid en welzijn
  • SDG 9 – Industrie, innovatie en infrastructuur
  • SDG 11 – Duurzame steden en gemeenschappen
  • SDG 12 – Verantwoordelijke consumptie en productie

Vingerafdruk

Verdiep u in de onderzoeksgebieden waarop Marwan Hassani actief is. Deze onderwerplabels komen uit het werk van deze persoon. Samen vormen ze een unieke vingerafdruk.
  • 1 Soortgelijke profielen

Samenwerkingen en hoofdonderzoeksgebieden uit de afgelopen vijf jaar

Recente externe samenwerking op landen-/regioniveau. Duik in de details door op de stippen te klikken of
  • Autoencoder-based Continual Outlier Correlation Detection for Real-Time Traffic Flow Prediction

    Choudhary, H. & Hassani, M., 2024, 39th Annual ACM Symposium on Applied Computing, SAC 2024. blz. 218-220 3 blz.

    Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

  • Online Next Activity Prediction Under Concept Drifts.

    Kosciuszek, T. & Hassani, M., 2024, Advanced Information Systems Engineering Workshops: CAiSE 2024 International Workshops, Limassol, Cyprus, June 3–7, 2024, Proceedings. Almeida, J. P. A., Di Ciccio, C. & Kalloniatis, C. (uitgave). blz. 335-346 12 blz. (Lecture Notes in Business Information Processing; vol. 521).

    Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

  • Online Prediction Threshold Optimization Under Semi-deferred Labelling

    Spenrath, Y., Hassani, M. & van Dongen, B. F., 2024, 8th International workshop on Data Analytics solutions for Real-LIfe APplications (DARLI-AP). Palpanas, T. & Jagadish, H. V. (uitgave). CEUR-WS.org, (CEUR Workshop Proceedings; vol. 3651).

    Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

    Open Access
  • Using Human Mobility Patterns to Forecast Outliers in Citizen Complaints Data

    Bolta, V. & Hassani, M., 22 jan. 2024, 2023 IEEE International Conference on Big Data, BigData 2023. He, J., Palpanas, T., Hu, X., Cuzzocrea, A., Dou, D., Slezak, D., Wang, W., Gruca, A., Lin, J.C.-W. & Agrawal, R. (uitgave). Institute of Electrical and Electronics Engineers, blz. 5166-5175 10 blz. 10386331

    Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

    Open Access
    Bestand
    1 Downloads (Pure)
  • Can we Learn from Outliers? Unsupervised Optimization of Intelligent Vehicle Traffic Management Systems

    Mertens, T. & Hassani, M., 18 mrt. 2023, Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2022, Grenoble, France, September 19–23, 2022, Proceedings, Part VI. Amini, M.-R., Canu, S., Fischer, A., Guns, T., Kralj Novak, P. & Tsoumakas, G. (uitgave). Springer, blz. 521-537 17 blz. (Lecture Notes in Computer Science (LNCS); vol. 13718).

    Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

    Open Access
    Bestand
    1 Citaat (Scopus)