Introductie / missie

Turbulence is a major obstacle for building fusion reactors. We use theory and simulation to further our understanding of turbulence and ultimately find magnetic field shapes that minimise turbulence.

Highlighted phrase

Thanks to the multitude of shapes available, we can optimise stellarators even for turbulence.

Over de organisatie

Plasma turbulence is one of the last fundamental obstacles to harnessing nuclear fusion for power generation. The stellarator concept, which is presently seeing the successful operation of the Wendelstein 7-X experiment, can potentially be optimized to make turbulence negligible. However, in W7-X the magnetic field geometry is optimized for good confinement only. Due to the computational expense of direct numerical turbulence simulation in 3D stellarator geometry, and the lack of accurate reduced predictive models, turbulence could not be incorporated in the optimisation of the design. But it must, if the stellarator concept is to be a power plant candidate. 

We aim at building a framework for turbulence optimisation in stellarators. The key enabling component is a reduced turbulence model sufficiently tractable to incorporate into an optimisation process. This demands understanding both the underlying instabilities as well as the saturation mechanisms by which the underlying linear instabilities nonlinearly couple to define the turbulent state.

By means of analytical calculations, simulations using the advanced gyrokinetics code GENE and comparisons with experiments performed on W7-X, we study and classify the different saturation mechanisms available, and model how both drive and saturation depend on the magnetic geometry. 

Ultimately, our aim is to build an accurate turbulence model allowing for fast simulations of turbulence-driven heat loss. In that way we can explore the large stellarator design-space and tailor a low-turbulence confinement regime. 

Vingerafdruk Duik in de onderzoeksthema's waar Turbulence in Fusion Plasmas actief is. Deze onderwerplabels komen voort uit het werk van deze leden van de organisatie. Samen vormen ze een unieke vingerafdruk.

stellarators Fysica en Astronomie
heliotrons Fysica en Astronomie
pellets Fysica en Astronomie
trapped particles Fysica en Astronomie
turbulence Fysica en Astronomie
configurations Fysica en Astronomie
refueling Fysica en Astronomie
physics Fysica en Astronomie

Netwerk Recente externe samenwerking op landenniveau. Duik in de details door op de stippen te klikken.

Onderzoeksoutput 2017 2019

  • 5 Tijdschriftartikel
  • 1 Commentaar/Brief aan de redacteur
  • 1 Artikel recenseren
12 Citaties (Scopus)
7 Downloads (Pure)

Overview of first Wendelstein 7-X high-performance operation

The Wendelstein 7-X Team, Abramovic, I. & Proll, J., 5 jun 2019, In : Nuclear Fusion. 59, 11, 11 blz., 112004.

Onderzoeksoutput: Bijdrage aan tijdschriftArtikel recenserenAcademicpeer review

Open Access
plasma density
1 Citaat (Scopus)
1 Downloads (Pure)

Author Correction: Magnetic configuration effects on the Wendelstein 7-X stellarator

The Wendelstein 7-X Team, 11 sep 2018, In : Nature Physics. 14, blz. 1067 1 blz.

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

Open Access

First steps towards modeling of ion-driven turbulence in Wendelstein 7-X

Warmer, F., Xanthopoulos, P., Proll, J. H. E., Beidler, C. D., Turkin, Y. & Wolf, R. C., 1 jan 2018, In : Nuclear Fusion. 58, 1, 016017.

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

ion temperature


NWO Grant for optimising turbulence in fusion reactors

Josefine Proll (Ontvanger), jul 2019

Prijs: NWOOtherWetenschappelijk

fusion reactors
nuclear fusion
nuclear fission


€4.4 million for innovative and urgent research via Domain Science - KLEIN

Josefine Proll


1 item van Media-aandacht

Pers / media: Vakinhoudelijk commentaar