Projecten per jaar
Organisatieprofiel
Introductie / missie
At a high level, we study the underlying mathematical structure of complex systems, and develop effective techniques to analyze and optimize them. All such systems arise and are inspired by real-world applications. Therefore, we investigate them from a double perspective: we aim at advancing their theoretical foundations, while at the same time maintaining strong ties and connections with industry and other scientific domains.
Likewise, the education portfolio revolves around rigorous mathematical concepts and stylized models, but with an eye towards real-life problems and applications.
Visit the SPOR website for more information
Highlighted phrase
We conduct fundamental research in discrete optimization, stochastic operations research, probability theory and statistics.
Organisatieprofiel
The cluster features 4 main research disciplines.
1) Combinatorial Optimization. We investigate complex discrete optimization problems that arise at the interface of operations research, applied mathematics, and theoretical computer science. A primary goal is to design (exact, approximate, and heuristic) algorithms to solve such problems. The development of such algorithms heavily exploits advanced techniques in the areas of mathematical programming, polyhedral combinatorics, graph theory and network design. Typical application areas are scheduling, production planning, logistics, telecommunication/routing networks, game theory, health care, data science.
2) Stochastic Operations Research. We study the effects of randomness and uncertainty on complex systems and optimization problems, with techniques at the intersection of applied probability and operations research. Particular attention is given to the area of stochastic processes on interacting networks, queueing theory and the analysis of random walks and higher-dimensional Markov processes. A key goal is to develop analytic, probabilistic, algorithmic and asymptotic methods, with emphasis on asymptotic laws and scaling limits for large-scale critical systems. Typical application areas are computer-communications, energy networks, logistics and service operations, biological systems, particle interactions, and social networks.
3) Probability. We investigate probabilistic networks and their applications in statistical physics and networking. A special focus is on the structure of random graphs, algorithms and stochastic processes on them, as well as spin systems and self-interacting random processes. The main aim is to identify the scaling behavior for such systems, by applying methodology such as large deviations, combinatorial expansions and coupling techniques. Applications include physics, social networks, and complexity problems such as arising in chemistry and biomedical engineering.
4) Statistics. We develop and compare data-analytical methods for analyzing and sampling complex structured correlated data sets. It includes parameter estimation, model fitting, latent variable models, mixed models, missing data, statistical process control, survival and reliability theory, time series analysis, and statistical learning methods. One of the central themes is the analysis of high-dimensional temporal data sets and other large data sets. Applications include data science and machine learning, biopharmaceutical companies, chemical industry, medical centers.
Vingerafdruk
Samenwerkingen en hoofdonderzoeksgebieden uit de afgelopen vijf jaar
Profielen
-
Aida Abiad Monge
- Mathematics and Computer Science, Algebraic Combinatorics - Universitair Hoofddocent
- EAISI Foundational - Universitair Hoofddocent
Persoon: UHD : Universitair Hoofddocent
-
Osama Almalik, MSc
- Mathematics and Computer Science, Statistics - Promovendus
Persoon: Prom. : Promovendus
-
Elene Anton
Persoon: PD : Postdoc
-
Waardevol AI EAISI IMPULS
Sanders, J. (Project Manager), van Kempen, S. F. M. (Projectmedewerker) & van Vuren, T. P. A. (Projectmedewerker)
1/01/21 → 31/07/26
Project: Third tier
-
Complexity in Transport and Logistics
Vlasiou, M. (Project Manager) & Schol, C. (Projectmedewerker)
28/08/17 → 30/09/22
Project: Onderzoek direct
-
Onderzoeksoutput
-
A customised down-sampling machine learning approach for sepsis prediction
Wu, Q., Ye, F., Gu, Q., Shao, F., Long, X., Zhan, Z., Zhang, J., He, J., Zhang, Y. & Xiao, Q., apr. 2024, In: International Journal of Medical Informatics. 184, 11 blz., 105365.Onderzoeksoutput: Bijdrage aan tijdschrift › Tijdschriftartikel › Academic › peer review
Open AccessBestand1 Citaat (Scopus)53 Downloads (Pure) -
Adaptive appointment scheduling with periodic updates
Mahes, R. (Corresponding author), Mandjes, M. & Boon, M., jan. 2024, In: Computers & Operations Research. 161, 16 blz., 106437.Onderzoeksoutput: Bijdrage aan tijdschrift › Tijdschriftartikel › Academic › peer review
Open AccessBestand79 Downloads (Pure) -
Adaptive scheduling in service systems: A Dynamic programming approach
Mahes, R. (Corresponding author), Mandjes, M., Boon, M. & Taylor, P., 16 jan. 2024, In: European Journal of Operational Research. 312, 2, blz. 605-626 22 blz.Onderzoeksoutput: Bijdrage aan tijdschrift › Tijdschriftartikel › Academic › peer review
Open AccessBestand3 Citaten (Scopus)67 Downloads (Pure)
Datasets
-
Simulated data set
Zhan, Z. (Ontwerper), Harvard Dataverse, 27 jan. 2020
DOI: 10.7910/dvn/4uomeh, https://dataverse.harvard.edu/citation?persistentId=doi:10.7910/DVN/4UOMEH
Dataset
-
Simulation data for "Increasing efficacy of contact-tracing applications by user referrals and stricter quarantining"
Goldberg, L. A. (Bijdrager), Jorritsma, J. (Bijdrager), Komjáthy, J. (Bijdrager) & Lapinskas, J. (Bijdrager), Zenodo, 12 mrt. 2021
Dataset
-
Software for "Increasing efficacy of contact-tracing applications by user referrals and stricter quarantining"
Goldberg, L. A. (Bijdrager), Jorritsma, J. (Bijdrager), Komjáthy, J. (Bijdrager) & Lapinskas, J. (Bijdrager), Zenodo, 9 apr. 2021
Dataset
Prijzen
-
2017 AMSI-ANZIAM Lecturer
Vlasiou, M. (Ontvanger), 2017
Prijs: Anders › Visiting scholar › Wetenschappelijk
-
2020 Applied Probability Trust Prize
Sloothaak, F. (Ontvanger), 16 jan. 2020
Prijs: Anders › Overig › Wetenschappelijk
-
Algorithms for coping with uncertainty and intractability
Bansal, N. (Ontvanger), 2013
Prijs: ERC › Consolidator › Wetenschappelijk
Activiteiten
-
Detecting and Handling Reflection Symmetries in MINLP
Hojny, C. (Spreker)
26 jul. 2024Activiteit: Types gesprekken of presentaties › Genodigd spreker › Wetenschappelijk
-
Purdue University
Pandey, M. (Bezoekende onderzoeker)
28 jun. 2024 → 10 aug. 2024Activiteit: Types bezoeken aan een externe instelling › Bezoek externe academische instelling › Wetenschappelijk
-
Detecting and Handling Reflection Symmetries in MINLP
Hojny, C. (Spreker)
13 jun. 2024Activiteit: Types gesprekken of presentaties › Genodigd spreker › Wetenschappelijk
Knipsels
-
Centrality measures: who is the most important in a network?
2/06/23
1 Mediabijdrage
Pers / media: PR activiteiten
-
-
Feest voor gelauwerde TU/e-wiskundemaster
11/11/22
1 Mediabijdrage
Pers / media: Vakinhoudelijk commentaar
Impacts
-
Stochactic processes on interacting networks
Vlasiou, M. (Content manager)
Impact: Research Topic/Theme (at group level)
-
Scripties/Masterproeven
-
2-class Terror Queue model: Analysis and optimal assignment of agents
Janicka-Verpaalen, A. (Auteur), Vlasiou, M. (Afstudeerdocent 1), jul. 2020Scriptie/Masterproef: Bachelor
Bestand -
A brief exploration into divergent series in probability theory
van Wijk, W. J. (Auteur), Sanders, J. (Afstudeerdocent 1), 2020Scriptie/Masterproef: Bachelor
Bestand -
Achieving Long Term Fairness through Curiosity Driven Reinforcement Learning: How intrinsic motivation influences fairness in algorithmic decision making
van der Wee, W. J. (Auteur), Pechenizkiy, M. (Afstudeerdocent 1), Gajane, P. (Afstudeerdocent 2) & Kapodistria, S. (Afstudeerdocent 2), 28 aug. 2023Scriptie/Masterproef: Master
Bestand