Neuromorphic Edge Computing Systems Lab

  • AdresToon op kaart

    Department of Electrical Engineering, Flux, room 4.130

    5612 AP Eindhoven

    Nederland

Organisatieprofiel

Introductie / missie

The Neuromorphic Edge Computing Systems Lab strives to create computing algorithms, circuits, systems, and architectures for emerging applications and a more sustainable computing scenario.

Highlighted phrase

Our long-term research goal is to enable intelligence inside our microchips by designing neuromorphic circuits and systems that mimic the brain's fundamental information processing strategies for solving challenging real-world problems.

Organisatieprofiel

We aim to build brain-inspired machine intelligence devices. We address the problem of machine intelligence across the whole computing stack, from new models of computation down to hardware. We take inspiration from the brain's efficiency, and we research neural-inspired models of computation that are massively parallel, compute on-demand, and benefit from emerging nano- and microelectronics technologies to develop new disruptive neuromorphic computing systems.

The specific research activities in the NECS Lab focus on embedding intelligence in edge devices in the form of adaptability, robustness, long-life and online learning, intent, and explainability. We research performance optimization and energy tradeoffs for specific machine intelligence tasks by co-design algorithms and hardware. We develop complementary metal-oxide-semiconductor (CMOS) Very Large Scale Integrated (VLSI) neuromorphic devices with in-memory and near-memory computing abilities to replicate bio-realistic spiking neural networks interconnected with learning synapses.

Applications 

Emerging applications in brain-computer interfaces, health monitoring, intelligent robotics, and the internet-of-things require increasing computing power in tiny chips that need to work with as little energy as possible and need to process increasingly more data. Using traditional performance scaling methods, scaling at the lowest levels of the hardware as the microelectronic industry has been doing in the last decades, we can still improve, but not enough. In the long term, to go beyond the limits of physical scaling, we need to research disruptive technology solutions together with new models of computation.

VN Doelstellingen voor duurzame ontwikkeling

In 2015 stemden de VN-lidstaten in met 17 wereldwijde duurzame ontwikkelingsdoelstellingen (Sustainable Development Goals, SDG's) om armoede te beëindigen, de planeet te beschermen en voor iedereen welvaart te garanderen. Ons werk draagt bij aan de volgende duurzame ontwikkelingsdoelstelling(en):

  • SDG 7 – Betaalbare en schone energie

Vingerafdruk

Verdiep u in de onderzoeksgebieden waarop Neuromorphic Edge Computing Systems Lab actief is. Deze onderwerplabels komen uit het werk van de leden van deze organisatie. Samen vormen ze een unieke vingerafdruk.

Samenwerkingen en hoofdonderzoeksgebieden uit de afgelopen vijf jaar

Recente externe samenwerking op landen-/regioniveau. Duik in de details door op de stippen te klikken of
  • Hardware/Software Co-Design Optimization for Training Recurrent Neural Networks at the Edge

    Zhang, Y. (Corresponding author-nrf), Yin, B., Gomony, M. D., Corporaal, H., Trinitis, C. & Corradi, F. (Corresponding author), mrt. 2025, In: Journal of Low Power Electronics and Applications. 15, 1, 26 blz., 15.

    Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

    Open Access
    Bestand
    17 Downloads (Pure)
  • SpikeVision: A Fully Spiking Neural Network Transformer-Inspired Model for Dynamic Vision Sensors

    Shen, Z. & Corradi, F., 4 apr. 2025, 2024 58th Asilomar Conference on Signals, Systems, and Computers. Matthews, M. B. (uitgave). Institute of Electrical and Electronics Engineers, blz. 1537-1541 5 blz. 10942764

    Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

    Open Access
    Bestand
    184 Downloads (Pure)
  • The neurobench framework for benchmarking neuromorphic computing algorithms and systems

    Yik, J. (Corresponding author), Van den Berghe, K., den Blanken, D., Bouhadjar, Y., Fabre, M., Hueber, P., Ke, W., Khoei, M. A., Kleyko, D., Pacik-Nelson, N., Pierro, A., Stratmann, P., Sun, P.-S. V., Tang, G., Wang, S., Zhou, B., Ahmed, S. H., Vathakkattil Joseph, G., Leto, B. & Micheli, A. & 80 anderen, Mishra, A. K., Lenz, G., Sun, T., Ahmed, Z., Akl, M., Anderson, B., Andreou, A. G., Bartolozzi, C., Basu, A., Bogdan, P., Bohte, S., Buckley, S., Cauwenberghs, G., Chicca, E., Corradi, F., de Croon, G., Danielescu, A., Daram, A., Davies, M., Demirag, Y., Eshraghian, J., Fischer, T., Forest, J., Fra, V., Furber, S., Furlong, P. M., Gilpin, W., Gilra, A., Gonzalez, H. A., Indiveri, G., Joshi, S., Karia, V., Khacef, L., Knight, J. C., Kriener, L., Kubendran, R., Kudithipudi, D., Liu, S.-C., Liu, Y.-H., Ma, H., Manohar, R., Margarit-Taulé, J. M., Mayr, C., Michmizos, K., Muir, D. R., Neftci, E., Nowotny, T., Ottati, F., Ozcelikkale, A., Panda, P., Park, J., Payvand, M., Pehle, C., Petrovici, M. A., Posch, C., Renner, A., Sandamirskaya, Y., Schaefer, C. J. S., van Schaik, A., Schemmel, J., Schmidgall, S., Schuman, C., Seo, J.-S., Sheik, S., Shrestha, S. B., Sifalakis, M., Sironi, A., Stewart, K., Stewart, M., Stewart, T. C., Timcheck, J., Tömen, N., Urgese, G., Verhelst, M., Vineyard, C. M., Vogginger, B., Yousefzadeh, A., Zohora, F. T., Frenkel, C. & Reddi, V. J., 11 feb. 2025, In: Nature Communications. 16, 1, 1545.

    Onderzoeksoutput: Bijdrage aan tijdschriftArtikel recenserenpeer review

    Open Access
    Bestand
    3 Citaten (Scopus)
    5 Downloads (Pure)