Constrained Control of Complex Systems

  • Groene Loper 19, Flux

    5612 AP Eindhoven


  • P.O. Box 513, Department of Electrical Engineering

    5600 M Eindhoven



Introductie / missie

The C3S Lab focuses on stability and control of complex dynamical systems subject to constraints. Complex dynamical systems typically encompass more interconnected nonlinear systems and perform complex tasks subject to rich safety and performance specifications. Mastering complex dynamical systems plays a key role in the development of smart energy systems, high-tech mechatronics, autonomous vehicles or bio-medical systems.

Over de organisatie

We make use of model predictive control (MPC) theory to deal with constraints and we design MPC algorithms and fast MPC solvers for complex systems (highly nonlinear, hybrid, uncertain or large-scale interconnected systems). We research flexible control Lyapunov functions to enforce stability for real-time controllers. To increase autonomy and reliability of control systems we focus on integration of artificial intelligence (neural networks) with classical and predictive controllers.

The methods developed by the C3S Lab have been applied in automotive (distributed MPC for platooning, predictive fuel efficiency optimization), energy (distributed control of power systems, constrained control of power converters, predictive temperature control in smart buildings), mechatronics (fast nonlinear MPC for coreless linear motors, Lyapunov control of permanent magnet synchronous machines), robotics (predictive path planning and trajectory tracking for a LEGO robot) and biological systems (stability analysis and switching control therapies for cancer and HPA dynamical models).

Vingerafdruk Verdiep u in de onderzoeksgebieden waarop Constrained Control of Complex Systems actief is. Deze onderwerplabels komen uit het werk van de leden van deze organisatie. Samen vormen ze een unieke vingerafdruk.

  • Netwerk Recente externe samenwerking op landenniveau. Duik in de details door op de stippen te klikken.



    Efficient move blocking strategy for multiple shooting-based non-linear model predictive control

    Chen, Y., Scarabottolo, N., Bruschetta, M. & Beghi, A., feb 2020, In : IET Control Theory & Applications. 14, 2, blz. 343-351 9 blz.

    Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

  • Stability Analysis of Thermodynamic Systems: Heat Conduction in Solids

    Lou, D. & Weiland, S., 2020, (Geaccepteerd/In druk).

    Onderzoeksoutput: Bijdrage aan congresPaperAcademic

    A computationally efficient model predictive control scheme for space debris rendezvous

    Larsén, A. K., Chen, Y., Bruschetta, M., Carli, R., Cenedese, A., Varagnolo, D. & Felicetti, L., okt 2019, In : IFAC-PapersOnLine. 52, 12, blz. 103-110 8 blz.

    Onderzoeksoutput: Bijdrage aan tijdschriftCongresartikelAcademicpeer review

    Open Access
  • 12 Downloads (Pure)


    Baicalin inhibits the lethality of Shiga-like toxin 2 in mice [PublishAheadOfPrint]

    Yutao Chen


    1 item van Media-aandacht

    Pers / media: Vakinhoudelijk commentaar


    Adaptive friction compensation for an industrial coreless linear motor setup

    Auteur: van den Boom, P., 13 dec 2018

    Begeleider: Nguyen, T. (Afstudeerdocent 1), Lazar, M. (Afstudeerdocent 2) & Butler, H. (Afstudeerdocent 2)

    Scriptie/Masterproef: Master

    A fast nonlinear MPC solver for real-time control of linear motors

    Auteur: Riera Segui, A., 2018

    Begeleider: Lazar, M. (Afstudeerdocent 1) & Nguyen, T. (Afstudeerdocent 2)

    Scriptie/Masterproef: Master

    Centralized and distributed identified model based predictive control for Museum Hermitage Amsterdam

    Auteur: Chen, X., 22 mrt 2019

    Begeleider: Lazar, M. (Afstudeerdocent 1), Ludlage, J. (Afstudeerdocent 2), Van den Hof, P. (Afstudeerdocent 2) & Lefeber, E. (Afstudeerdocent 2)

    Scriptie/Masterproef: Master