• De Zaale, Cascade, room 3.12

    5612 AJ Eindhoven

    Nederland

  • P.O. Box 513, Department of Applied Physics

    5600 MB Einhoven

    Nederland

Organisatieprofiel

Introductie / missie

The Computational Materials Physics group of Shuxia Tao works on the understanding of the process-structure-property-performance relationship of materials for energy applications. To do this, we develop and use multiscale methods, combining quantum methods e.g. Density Functional Theory with classical methods e.g. Molecular Dynamics, to study the complex interplay of chemistry and physics of materials at the nanoscale.

Highlighted phrase

Simulating materials one atom at a time

Over de organisatie

We use Density Functional Theory based multiscale computer simulations to design materials for energy application. Our main focus is perovskite solar cells. Perovskite solar cells have emerged as one of the most promising photovoltaic technologies because of their potentially higher efficiency and lower cost than Si ones. The one remaining challenge is the long-term stability. The state-of-the-art cells are only stable for hundreds of hours. Ion migration as well as chemical reactions are key processes causing degradation. All the above processes are triggered and accelerated by the presence of intrinsic defects in the perovskite and extrinsic device operation stress, such as, thermal stress, light excitation and electrical bias.

As highlights of our recent progress, we have understood the mechanisms of a major stability issue phase segregation and discovered an effective additive fluoride for effective defect passivation. Both have opened possibilities for designing new perovskite compositions for extended service life of perovskite solar cells. Our future challenges include the development of efficient multiscale methods for understanding several physical and chemical pro

We use Density Functional Theory based multiscale computer simulations to design materials for energy application. Our main focus is perovskite solar cells. Perovskite solar cells have emerged as one of the most promising photovoltaic technologies because of their potentially higher efficiency and lower cost than Si ones. The one remaining challenge is the long-term stability. The state-of-the-art cells are only stable for hundreds of hours. Ion migration as well as chemical reactions are key processes causing degradation. All the above processes are triggered and accelerated by the presence of intrinsic defects in the perovskite and extrinsic device operation stress, such as, thermal stress, light excitation and electrical bias.

As highlights of our recent progress, we have understood the mechanisms of a major stability issue phase segregation and discovered an effective additive fluoride for effective defect passivation. Both have opened possibilities for designing new perovskite compositions for extended service life of perovskite solar cells. Our future challenges include the development of efficient multiscale methods for understanding several physical and chemical processes in the materials and devices at larger length and longer time scales. With these new tools, we will be able to gain thorough understanding of several instability problems and efficiently design materials solutions for ultimate stable solar cells. 

cesses in the materials and devices at larger length and longer time scales. With these new tools, we will be able to gain thorough understanding of several instability problems and efficiently design materials solutions for ultimate stable solar cells.

Vingerafdruk Verdiep u in de onderzoeksgebieden waarop Computational Materials Physics actief is. Deze onderwerplabels komen uit het werk van de leden van deze organisatie. Samen vormen ze een unieke vingerafdruk.

  • Netwerk Recente externe samenwerking op landenniveau. Duik in de details door op de stippen te klikken.

    Onderzoeksoutput

    • 50 Tijdschriftartikel
    • 13 Conferentiebijdrage
    • 1 Dissertatie 1 (Onderzoek TU/e / Promotie TU/e)
    • 1 Dissertatie 4 (Onderzoek NIET TU/e / Promotie NIET TU/e)

    Compositional effect on water adsorption on metal halide perovskites

    Li, Q., Chen, Z., Tranca, I., Gaastra-Nedea, S., Smeulders, D. & Tao, S., 1 feb 2021, In : Applied Surface Science. 538, 10 blz., 148058.

    Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

    Open Access
  • Defect states contributed nanoscale contact electrification at ZnO nanowires packed film surfaces

    Song, Y., Wang, N., Fadlallah, M. M., Tao, S., Yang, Y. & Wang, Z. L., jan 2021, In : Nano Energy. 79, 10 blz., 105406.

    Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

  • Alkali-Cation-Enhanced Benzylammonium Passivation for Efficient and Stable Perovskite Solar Cells Fabricated Through Sequential Deposition

    Cao, J., Jiang, J., Li, N., Dong, Y., Jia, Y., Tao, S. & Zhao, N., 7 okt 2020, In : Journal of Materials Chemistry A. 8, 37, blz. 19357-19366 10 blz.

    Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

  • 1 Citaat (Scopus)

    Activiteiten

    • 1 Redactioneel werk

    Scientific Reports (Tijdschrift)

    Shuxia Tao (Lid redactieraad)

    jun 2018 → …

    Activiteit: Types publicaties van collegiale toetsing en redactioneel werkRedactioneel werkWetenschappelijk

    Knipsels

    Just like toothpaste: Fluoride radically improves the stability of perovskite solar cells

    Shuxia Tao

    13/05/1914/05/19

    3 items van Media-aandacht

    Pers / media: Vakinhoudelijk commentaar