Adres
  • Department of Biomedical Engineering Eindhoven University of Technology, P.O. Box 513

    5600 MB Eindhoven

    Nederland

  • Eindhoven University of Technology, Building 15, Gemini-South (room 4.115) Groene Loper

    5612 AZ Eindhoven

    Nederland

Vind ons hier

Organisatieprofiel

Introductie / missie

The mission of the group is to educate students in the biomechanics of soft tissues with emphasis on both computational as well as experimental methods. This includes development of constitutive models for solids and mixtures, including growth, adaptation and damage development. Experimental techniques involve in-vivo and ex-vivo mechanical testing at multiple scales, microscopic techniques and inverse methods.

Highlighted phrase

understand and predict the behaviour of biological structures and organs

Over de organisatie

Biomechanics has always played an important role in biomedical engineering and forms an integral part of a multi-disciplinary approach to clinical and biological problems. Biomechanical modelling became an essential tool to understand and predict the behaviour of biological structures and organs, from the molecular scale up to the full body scale. This involved the solution of solid/fluid interaction problems and the transport of small and large molecules in tissues. A lot of effort was put in dynamical time dependent variations, which are so specific for biological tissues like growth, adaptation and degradation.

The research comprises two related research lines and is a good example of the trend in research methodology that is described above.  The first line is aimed at the prevention of Pressure Ulcers (PUs) with three major objectives: 1. Understanding the mechanisms that cause PUs 2. Develop a method to identify patients at risk. 3. Develop a method for early detection of ulcers that start to develop in deep tissue layers near the bony prominences. The second research line involves biomechanics of skin, strongly related to conditions associated with PUs (studies on skin irritation and biomarkers), but also focused on other application areas (interaction of skin with personal care devices and trans-epidermal drug delivery). The above-mentioned applications required detailed knowledge of mechanical properties like stiffness and strength as well as transport properties  (diffusion coefficients, permeability) at a very local level in the top layers of the skin.

Vingerafdruk

Verdiep u in de onderzoeksgebieden waarop Biomechanics of Soft Tissue actief is. Deze onderwerplabels komen uit het werk van de leden van deze organisatie. Samen vormen ze een unieke vingerafdruk.

Netwerk

Recente externe samenwerking op landenniveau. Duik in de details door op de stippen te klikken.