Wireless network control of interacting Rydberg atoms

Research output: Book/ReportReportAcademic

91 Downloads (Pure)


We identify a relation between the dynamics of ultra-cold Rydberg gases in which atoms experience a strong dipole blockade and spontaneous emission, and a stochastic process that models certain wireless random-access networks. We then transfer insights and techniques initially developed for these wireless networks to the realm of Rydberg gases, and explain how the Rydberg gas can be driven into crystal formations using our understanding of wireless networks. Notably, we also propose a method to determine Rabi frequencies (laser intensities) such that particles in the Rydberg gas are excited with specified target excitation probabilities.
Original languageEnglish
Number of pages6
Publication statusPublished - 2013

Publication series

Volume1312.3464 [quant-ph]

Fingerprint Dive into the research topics of 'Wireless network control of interacting Rydberg atoms'. Together they form a unique fingerprint.

Cite this