TY - UNPB
T1 - What is the Relationship between Tensor Factorizations and Circuits (and How Can We Exploit it)?
AU - Loconte, Lorenzo
AU - Mari, Antonio
AU - Gala, Gennaro
AU - Peharz, Robert
AU - de Campos, Cassio
AU - Quaeghebeur, Erik
AU - Vessio, Gennaro
AU - Vergari, Antonio
N1 - DBLP License: DBLP's bibliographic metadata records provided through http://dblp.org/ are distributed under a Creative Commons CC0 1.0 Universal Public Domain Dedication. Although the bibliographic metadata records are provided consistent with CC0 1.0 Dedication, the content described by the metadata records is not. Content may be subject to copyright, rights of privacy, rights of publicity and other restrictions.
PY - 2024
Y1 - 2024
N2 - This paper establishes a rigorous connection between circuit representations and tensor factorizations, two seemingly distinct yet fundamentally related areas. By connecting these fields, we highlight a series of opportunities that can benefit both communities. Our work generalizes popular tensor factorizations within the circuit language, and unifies various circuit learning algorithms under a single, generalized hierarchical factorization framework. Specifically, we introduce a modular "Lego block" approach to build tensorized circuit architectures. This, in turn, allows us to systematically construct and explore various circuit and tensor factorization models while maintaining tractability. This connection not only clarifies similarities and differences in existing models, but also enables the development of a comprehensive pipeline for building and optimizing new circuit/tensor factorization architectures. We show the effectiveness of our framework through extensive empirical evaluations, and highlight new research opportunities for tensor factorizations in probabilistic modeling.
AB - This paper establishes a rigorous connection between circuit representations and tensor factorizations, two seemingly distinct yet fundamentally related areas. By connecting these fields, we highlight a series of opportunities that can benefit both communities. Our work generalizes popular tensor factorizations within the circuit language, and unifies various circuit learning algorithms under a single, generalized hierarchical factorization framework. Specifically, we introduce a modular "Lego block" approach to build tensorized circuit architectures. This, in turn, allows us to systematically construct and explore various circuit and tensor factorization models while maintaining tractability. This connection not only clarifies similarities and differences in existing models, but also enables the development of a comprehensive pipeline for building and optimizing new circuit/tensor factorization architectures. We show the effectiveness of our framework through extensive empirical evaluations, and highlight new research opportunities for tensor factorizations in probabilistic modeling.
U2 - 10.48550/arXiv.2409.07953
DO - 10.48550/arXiv.2409.07953
M3 - Preprint
VL - abs/2409.07953
BT - What is the Relationship between Tensor Factorizations and Circuits (and How Can We Exploit it)?
ER -