Water uptake of hydrophilic polymers determined by thermal gravimetric analyzer with a controlled humidity chamber

H.M.L. Thijs, Remzi Becer, C.A. Guerrero Sanchez, D.J.R. Fournier, R. Hoogenboom, U.S. Schubert

Research output: Contribution to journalArticleAcademicpeer-review

94 Citations (Scopus)
1 Downloads (Pure)

Abstract

The moisture uptake of several water-soluble polymers at different humidities was investigated with a thermal gravimetric analyzer equipped with a controlled humidity chamber. The water sorption of poly(acrylic acid) sodium salt, poly(ethylene glycol) and silica, which are known as super absorbers, were examined. In addition, various hydrophilic polymeric materials were selected according to their structural features. These included hydroxyl functions on the side chains (e.g. poly(2-hydroxyethyl methacrylate)), as well as acidic or basic functionalities (e.g. poly (dimethylaminoethyl methacrylate) or poly(vinylimidazole)). In addition, poly(2-methyl-2-oxazoline) (P(MeOx)) and poly(2-ethyl-2-oxazoline) (P(EtOx)), which are well-known hydrophilic polymers, were also investigated in this context. More significant weight percent changes were obtained for P(MeOx) (60% at 90% relative humidity (RH)) in comparison to P(EtOx) (35% at 90% RH) as a result of the slight difference in hydrophilicity of the structures. The effect of the chain length on the ability for water uptake was also investigated for both poly(oxazolines). Finally, thermoresponsive polymers with a lower critical solution temperature (LCST) behavior (e.g. poly(N-isopropylacrylamide) and poly(dimethylaminoethyl methacrylate)) were also examined. The measurements for the latter polymers were performed below and above the LCST of each polymer whereby the humidities are varied from 0 to 90% with steps of 10%. Upon increasing humidity, the results revealed relatively high water uptake values (8% and 22% for P(NIPAM) and for P(DMAEMA), respectively) below the LCSTs of the polymers and, contrastingly, a small weight loss above their LCSTs. The present results allow a deeper insight into important structure–property relationships (e.g. the influence of the polymer backbone, functional groups, LCST behavior, etc. on the water-uptake properties), and will in subsequent steps permit the directed design of tailor-made polymers for selected applications.
Original languageEnglish
Pages (from-to)4864-4871
JournalJournal of Materials Chemistry
Volume17
Issue number46
DOIs
Publication statusPublished - 2007

Fingerprint

Dive into the research topics of 'Water uptake of hydrophilic polymers determined by thermal gravimetric analyzer with a controlled humidity chamber'. Together they form a unique fingerprint.

Cite this