Wall shape optimization for a thermosyphon loop featuring corrugated pipes

Research output: Book/ReportReportAcademic

66 Downloads (Pure)

Abstract

In the present paper we address the problem of optimal wall-shape design of a single phase laminar thermosyphon loop. The model takes the buoyancy forces into account via the Boussinesq approximation. We focus our study on showing the effects of wall shape on the flow and on the temperature inside the thermosyphon. To this extend we determine the dependency of the flow rate and the increase in temperature, on the geometrical characteristics of the loop. The geometry considered is a set of axially symmetric corrugated pipes described by a set of parameters; namely the pipe inner radius, the period of the corrugation, the amplitude of the corrugation, and the ratio of expansion and contraction regions of a period of the pipe. The governing equations are solved using the Finite Element Method, in combination with an adaptive mesh refinement technique in order to capture the effects of wall shape. We characterize the effects of the amplitude and of the ratio of expansion and contraction. In particular we show that for a given fixed amplitude it is possible to find an optimal ratio of expansion and contraction that minimizes the temperature inside the thermosyphon. The results show that by adequately choosing the design parameters, the performance of the thermosyphon loop can be improved. Keywords: Thermosyphon, Corrugated Pipes, Shape Optimization
Original languageEnglish
Place of PublicationEindhoven
PublisherTechnische Universiteit Eindhoven
Number of pages8
Publication statusPublished - 2011

Publication series

NameCASA-report
Volume1144
ISSN (Print)0926-4507

Fingerprint Dive into the research topics of 'Wall shape optimization for a thermosyphon loop featuring corrugated pipes'. Together they form a unique fingerprint.

  • Cite this