TY - JOUR
T1 - Vom einfachen Komplex zum komplexen Gitter : Supramolekulare Komplexchemie
AU - Schmatloch, S.
AU - Schubert, U.S.
PY - 2003
Y1 - 2003
N2 - Koordinationsverbindungen, die bereits im vorletzten Jahrhundert durch die klassische Komplexchemie und Koordinationslehre beschrieben wurden und seit den späten 50iger Jahren intensiv auf dem Gebiet der homogenen und heterogenen Katalyse Einsatz finden, stehen erneut im Mittelpunkt eines neuen Forschungsbereichs: der metallo-supramolekularen Chemie. Komplizierte, supramolekulare Liganden, als Weiterentwicklung einfacher einzähniger Liganden und Chelatliganden, führen auf der Basis von Selbstorganisations- und Selbsterkennungsprozessen zusammen mit koordinierenden Metallionen zu genau definierten supramolekularen Architekturen. Die Natur nutzt diese als wesentliche Funktionsträger in biologischen Systemen, z. B. den Hämoglobin-Eisen-Komplex. Diesem Vorbild folgend versucht die supramolekulare Chemie, hochkomplexe, jedoch genau definierte Geometrien, wie Helikate, Fäden, Leitern, Rechen oder Gitter präparativ herzustellen und somit neuartige Materialien mit speziellen Eigenschaften zu entwickeln. Der Metallkomplex als zentrale Einheit der neuen Verbindungsklasse kann zu funktionalen supramolekularen Systemen führen. Diese könnten Anwendungen auf den Gebieten der Polyelektrolyte, der Elektrochemie (elektrisch leitende Polymere und Redoxkatalysatoren) und der Photochemie (organische Solarzellen) ermöglichen.
AB - Koordinationsverbindungen, die bereits im vorletzten Jahrhundert durch die klassische Komplexchemie und Koordinationslehre beschrieben wurden und seit den späten 50iger Jahren intensiv auf dem Gebiet der homogenen und heterogenen Katalyse Einsatz finden, stehen erneut im Mittelpunkt eines neuen Forschungsbereichs: der metallo-supramolekularen Chemie. Komplizierte, supramolekulare Liganden, als Weiterentwicklung einfacher einzähniger Liganden und Chelatliganden, führen auf der Basis von Selbstorganisations- und Selbsterkennungsprozessen zusammen mit koordinierenden Metallionen zu genau definierten supramolekularen Architekturen. Die Natur nutzt diese als wesentliche Funktionsträger in biologischen Systemen, z. B. den Hämoglobin-Eisen-Komplex. Diesem Vorbild folgend versucht die supramolekulare Chemie, hochkomplexe, jedoch genau definierte Geometrien, wie Helikate, Fäden, Leitern, Rechen oder Gitter präparativ herzustellen und somit neuartige Materialien mit speziellen Eigenschaften zu entwickeln. Der Metallkomplex als zentrale Einheit der neuen Verbindungsklasse kann zu funktionalen supramolekularen Systemen führen. Diese könnten Anwendungen auf den Gebieten der Polyelektrolyte, der Elektrochemie (elektrisch leitende Polymere und Redoxkatalysatoren) und der Photochemie (organische Solarzellen) ermöglichen.
U2 - 10.1002/ciuz.200300247
DO - 10.1002/ciuz.200300247
M3 - Article
SN - 0009-2851
VL - 37
SP - 180
EP - 187
JO - Chemie in Unserer Zeit
JF - Chemie in Unserer Zeit
IS - 3
ER -