Abstract
Liquid crystal colloid materials are described based on the liquid crystal (LC) E7 and submicron sized poly(methyl methacrylate-co-divinylbenzene) particles. Application of a thermal treatment to the composite material produces a finely dispersed network of the internally crosslinked polymeric inclusions in the LC-E7. Dynamic rheological measurements on the LC colloids show that the presence of this network imposes pronounced viscoelastic behavior on the material, which may be exploited in the manufacturing of large-area twisted nematic (TN) electro-optical cells via continuous methods as an alternative to the currently available batchwise routes. The electro-optical characteristics of TN cells based on the composite material are approximately comparable to the electro-optical characteristics of a reference cell filled with pure LC E7, which ensures that the largely increased viscoelasticity of the composite does not lead to a degradation of electro-optical properties
Original language | English |
---|---|
Pages (from-to) | 838-842 |
Journal | Journal of Applied Physics |
Volume | 89 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2001 |