Vibration isolation effect study of in-filled trench barriers to train-induced environmental vibrations

Jinbao Yao (Corresponding author), R. Zhao, Nan Zhang, Dujuan Yang

Research output: Contribution to journalArticleAcademicpeer-review

15 Citations (Scopus)
7 Downloads (Pure)


An in-filled trench barrier is usually used to reduce the damages from train-induced environmental vibrations. To find the vibration isolation effect of an in-filled trench barrier, this paper analyses the reflection coefficients and transmission coefficients of the Rayleigh wave at the interface between in-filled trenches and the soil. In our calculation formulas of ground vibrations, a single point and a single frequency excitation, as well as multi-point and multi-frequency excitation, are simultaneously derived in a soil-in-filled-trench system. Using these formulas and a numerical analysis, the effects of an in-filled trench barrier on the environmental vibrations induced by running trains are analyzed. The results show that the reflection coefficients increase, while the transmission coefficients decrease, with the density and elastic modulus of the in-filled material. The vibration isolation effect is clearly better than that without trenches. In a certain width range, the transmission coefficient and vertical acceleration levels decrease with the increase of trench width. The influences of the transmission coefficient and the vibration isolation effects are not clear with the trenches’ depth variation. The vertical vibrations of the ground pick-up point are all smaller than those without in-filled trenches.

Original languageEnglish
Article number105741
Number of pages14
JournalSoil Dynamics and Earthquake Engineering
Publication statusPublished - 1 Oct 2019


  • Environmental vibration
  • Infilled trench
  • Isolation
  • Rayleigh wave
  • Train


Dive into the research topics of 'Vibration isolation effect study of in-filled trench barriers to train-induced environmental vibrations'. Together they form a unique fingerprint.

Cite this