Upscaling of dislocation walls in finite domains

P.J.P. Meurs, van, A. Muntean, M.A. Peletier

Research output: Book/ReportReportAcademic

104 Downloads (Pure)


We wish to understand the macroscopic plastic behaviour of metals by upscaling the micro-mechanics of dislocations. We consider a highly simplified dislocation network, which allows our microscopic model to be a one dimensional particle system, in which the interactions between the particles (dislocation walls) are singular and non-local. As a first step towards treating realistic geometries, we focus on finite-size effects rather than considering an in finite domain as typically discussed in the literature. We derive effective equations for the dislocation density by means of G-convergence on the space of probability measures. Our analysis yields a classification of macroscopic models, in which the size of the domain plays a key role. Keywords: Plasticity; Multiscale; Straight edge-dislocations; Discrete-to-continuum limit; G-convergence
Original languageEnglish
Place of PublicationEindhoven
PublisherTechnische Universiteit Eindhoven
Number of pages30
Publication statusPublished - 2013

Publication series

ISSN (Print)0926-4507


Dive into the research topics of 'Upscaling of dislocation walls in finite domains'. Together they form a unique fingerprint.

Cite this