TY - BOOK

T1 - Universality for first passage percolation on sparse random graphs

AU - Bhamidi, S.

AU - Hofstad, van der, R.W.

AU - Hooghiemstra, G.

PY - 2014

Y1 - 2014

N2 - We consider first passage percolation on the conguration model with n vertices, and general independent and identically distributed edge weights assumed to have a density.
Assuming that the degree distribution satisfies a uniform X2 logX-condition, we analyze the asymptotic distribution for the minimal weight path between a pair of typical vertices, as well
the number of edges on this path namely the hopcount.
The hopcount satisfies a central limit theorem (CLT). Furthermore, writing Ln for the weight
of this optimal path, then we shown that Ln(log n)= n converges to a limiting random variable,
for some sequence n. This sequence n and the norming constants for the CLT are expressible
in terms of the parameters of an associated continuous-time branching process that describes the
growth of neighborhoods around a uniformly chosen vertex in the random graph. The limit of
Ln(log n)= n equals the sum of the logarithm of the product of two independent martingale
limits, and a Gumbel random variable. Till date, for sparse random graph models, such results
have been shown only for the special case where the edge weights have an exponential distribution,
wherein the Markov property of this distribution plays a crucial role in the technical analysis of
the problem.
The proofs in the paper rely on a refined coupling between shortest path trees and continuous-
time branching processes, and on a Poisson point process limit for the potential closing edges of
shortest-weight paths between the source and destination.

AB - We consider first passage percolation on the conguration model with n vertices, and general independent and identically distributed edge weights assumed to have a density.
Assuming that the degree distribution satisfies a uniform X2 logX-condition, we analyze the asymptotic distribution for the minimal weight path between a pair of typical vertices, as well
the number of edges on this path namely the hopcount.
The hopcount satisfies a central limit theorem (CLT). Furthermore, writing Ln for the weight
of this optimal path, then we shown that Ln(log n)= n converges to a limiting random variable,
for some sequence n. This sequence n and the norming constants for the CLT are expressible
in terms of the parameters of an associated continuous-time branching process that describes the
growth of neighborhoods around a uniformly chosen vertex in the random graph. The limit of
Ln(log n)= n equals the sum of the logarithm of the product of two independent martingale
limits, and a Gumbel random variable. Till date, for sparse random graph models, such results
have been shown only for the special case where the edge weights have an exponential distribution,
wherein the Markov property of this distribution plays a crucial role in the technical analysis of
the problem.
The proofs in the paper rely on a refined coupling between shortest path trees and continuous-
time branching processes, and on a Poisson point process limit for the potential closing edges of
shortest-weight paths between the source and destination.

M3 - Report

T3 - Report Eurandom

BT - Universality for first passage percolation on sparse random graphs

PB - Eurandom

CY - Eindhoven

ER -