Abstract
There is a unique distance regular graph with intersection array i (7, 6, 4, 4; 1, 1, 1, 6); it has 330 vertices, and its automorphism groupM 22.2 acts distance transitively. It does not have an antipodal 2-cover, but it has a unique antipodal 3-cover, and this latter graph has automorphism group 3.M 22.2 acting distance transitively. As a side result we show uniqueness of the strongly regular graph with parameters (v, k, , ) = (231, 30, 9, 3) under the assumption that it is a gamma space with lines of size 3.
Original language | English |
---|---|
Pages (from-to) | 21-29 |
Journal | Graphs and Combinatorics |
Volume | 2 |
DOIs | |
Publication status | Published - 1986 |