Two-dimensional vesicle dynamics under shear flow : effect of confinement

B. Kaoui, J.D.R. Harting, C. Misbah

Research output: Contribution to journalArticleAcademicpeer-review

61 Citations (Scopus)
273 Downloads (Pure)


Dynamics of a single vesicle under shear flow between two parallel plates is studied in two-dimensions using lattice-Boltzmann simulations. We first present how we adapted the lattice-Boltzmann method to simulate vesicle dynamics, using an approach known from the immersed boundary method. The fluid flow is computed on an Eulerian regular fixed mesh while the location of the vesicle membrane is tracked by a Lagrangian moving mesh. As benchmarking tests, the known vesicle equilibrium shapes in a fluid at rest are found and the dynamical behavior of a vesicle under simple shear flow is being reproduced. Further, we focus on investigating the effect of the confinement on the dynamics, a question that has received little attention so far. In particular, we study how the vesicle steady inclination angle in the tank-treading regime depends on the degree of confinement. The influence of the confinement on the effective viscosity of the composite fluid is also analyzed. At a given reduced volume (the swelling degree) of a vesicle we find that both the inclination angle, and the membrane tank-treading velocity decrease with increasing confinement. At sufficiently large degree of confinement the tank-treading velocity exhibits a nonmonotonous dependence on the reduced volume and the effective viscosity shows a nonlinear behavior.
Original languageEnglish
Article number066319
Pages (from-to)066319-1/11
Number of pages11
JournalPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics
Issue number6
Publication statusPublished - 2011


Dive into the research topics of 'Two-dimensional vesicle dynamics under shear flow : effect of confinement'. Together they form a unique fingerprint.

Cite this