TY - JOUR
T1 - Turbo equalization techniques toward robust PDM 16-QAM optical fiber transmission
AU - Arlunno, Valeria
AU - Caballero Jambrina, Antonio
AU - Borkowski, Robert
AU - Saldaña Cercos, Silvia
AU - Zibar, Darko
AU - Larsen, Knud J.
AU - Tafur Monroy, Idelfonso
N1 - This paper was published in Journal of Optical Communications and Networking and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://www.opticsinfobase.org/jocn/abstract.cfm?uri=jocn-6-2-204. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law.
PY - 2014
Y1 - 2014
N2 - In this paper, we show numerically and experimentally that turbo equalization (TE) is an efficient technique to mitigate performance degradations stemming from optical fiber propagation effects in both optical fiber dispersion managed and unmanaged coherent detection links. The effectiveness of the proposed solution can be appreciated in both linear and nonlinear regimes for either scenario. We report on a system employing a polarization division multiplexing (PDM) 16-quadrature amplitude modulation (QAM) format for which we accomplish an increment in tolerance to link input power of up to 3 dB that represents a substantial improvement margin. The best bit error rate (BER) performances will therefore be guaranteed in a larger window, 6 dB, of link input power thanks to the implemented TE scheme. Moreover, our proposed approach is also proven to effectively mitigate interchannel impairments from surrounding amplitude shift-keying interfering channels in a dispersion managed link achieving also in this case an increment in power tolerance of 3 dB. Furthermore, in terms of BER performances, our proposed TE approach guarantees a gain of about a half order of magnitude at the best operational point. As TE can be included in the current coherent detection transceiver technologies and complement other equalization techniques, it has prospects for application in next-generation high-capacity and long-reach optical transmission links.
AB - In this paper, we show numerically and experimentally that turbo equalization (TE) is an efficient technique to mitigate performance degradations stemming from optical fiber propagation effects in both optical fiber dispersion managed and unmanaged coherent detection links. The effectiveness of the proposed solution can be appreciated in both linear and nonlinear regimes for either scenario. We report on a system employing a polarization division multiplexing (PDM) 16-quadrature amplitude modulation (QAM) format for which we accomplish an increment in tolerance to link input power of up to 3 dB that represents a substantial improvement margin. The best bit error rate (BER) performances will therefore be guaranteed in a larger window, 6 dB, of link input power thanks to the implemented TE scheme. Moreover, our proposed approach is also proven to effectively mitigate interchannel impairments from surrounding amplitude shift-keying interfering channels in a dispersion managed link achieving also in this case an increment in power tolerance of 3 dB. Furthermore, in terms of BER performances, our proposed TE approach guarantees a gain of about a half order of magnitude at the best operational point. As TE can be included in the current coherent detection transceiver technologies and complement other equalization techniques, it has prospects for application in next-generation high-capacity and long-reach optical transmission links.
U2 - 10.1364/JOCN.6.000204
DO - 10.1364/JOCN.6.000204
M3 - Article
SN - 1943-0620
VL - 6
SP - 204
EP - 214
JO - Journal of Optical Communications and Networking
JF - Journal of Optical Communications and Networking
IS - 2
ER -