Abstract
Objective: To identify a shielding material compatible with optical head-motion tracking for prospective motion correction and which minimizes radio frequency (RF) radiation losses at 7 T without sacrificing line-of-sight to an imaging target.
Materials and methods: We evaluated a polyamide mesh coated with silver. The thickness of the coating was approximated from the composition ratio provided by the material vendor and validated by an estimate derived from electrical conductivity and light transmission measurements. The performance of the shield is compared to a split-copper shield in the context of a four-channel transmit-only loop array.
Results: The mesh contains less than a skin-depth of silver coating (300 MHz) and attenuates light by 15 %. Elements of the array vary less in the presence of the mesh shield as compared to the split-copper shield indicating that the array behaves more symmetrically with the mesh shield. No degradation of transmit efficiency was observed for the mesh as compared to the split-copper shield.
Conclusion: We present a shield compatible with future integration of camera-based motion-tracking systems. Based on transmit performance and eddy-current evaluations the mesh shield is appropriate for use at 7 T.
Original language | English |
---|---|
Pages (from-to) | 49-56 |
Number of pages | 8 |
Journal | Magnetic Resonance Materials in Physics, Biology and Medicine |
Volume | 28 |
Issue number | 1 |
DOIs | |
Publication status | Published - Feb 2014 |
Externally published | Yes |
Keywords
- Instrumentation
- Magnetic resonance imaging
- Neuroimaging
- Optical motion tracking