Transmission electron microscopy on early-stage tin oxide film morphology grown by atmospheric pressure chemical vapor deposition

G.J.A. Mannie, J. Deelen, van, J.W. Niemantsverdriet, P.C. Thune

    Research output: Contribution to journalArticleAcademicpeer-review

    3 Citations (Scopus)
    2 Downloads (Pure)

    Abstract

    Nucleation and morphology development during the early stages of chemical vapor deposition (CVD) processes are believed to be of major importance for the overall film properties. Here, the authors have investigated the nucleation of tin oxide films, comparing different tin precursors (tin tetrachloride (TTC) and monobutyl tin trichloride (MBTC)) and focusing on the effect of methanol addition on the film morphology. Employing electron transparent silicon oxide membranes as substrates and combining transmission electron microscopy (TEM), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) analysis on the same set of samples, we describe a detailed picture of nucleation behavior and film growth during early stages of film formation. Our main conclusion is that methanol addition during deposition acts as surfactant, lowering the surface energy of the substrate and resulting in a higher nucleation grain density. Based on these results, we propose a film growth model based on surface energy to explain morphology differences in tin oxide films resulting from methanol addition.
    Original languageEnglish
    Pages (from-to)263-270
    Number of pages8
    JournalApplied Surface Science
    Volume309
    DOIs
    Publication statusPublished - 2014

    Fingerprint Dive into the research topics of 'Transmission electron microscopy on early-stage tin oxide film morphology grown by atmospheric pressure chemical vapor deposition'. Together they form a unique fingerprint.

    Cite this