Translating 2D Director Profile to 3D Topography in a Liquid Crystal Polymer

Pengrong Lv, Yuxin You, Junyu Li, Yang Zhang, Dirk J. Broer, Jiawen Chen, Guofu Zhou, Wei Zhao (Corresponding author), Danqing Liu (Corresponding author)

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Morphological properties of surfaces play a key role in natural and man-made objects. The development of robust methods to fabricate micro/nano surface structures has been a long pursuit. Herein, an approach based on molecular self-assembling of liquid crystal polymers (LCPs) is presented to directly translate 2D molecular director profiles obtained by a photoalignment procedure into 3D topographies, without involving further multi-step lithographic processes. The principle of surface deformation from a flat morphology into complex topographies is based on the coupling between electrostatic interactions and the anisotropic flow in LCPs. When activated by an electric field, the LCP melts and is driven by electrohydrodynamic instabilities to connect the electrode plates of a capacitor, inducing topographies governed by the director profile of the LCP. Upon switching off the electric field, the formed structures vitrify as the temperature decreases below the glass transition. When heated, the process is reversible as the formed topographies disappear. By pre-programming the molecular director a variety of structures could be made with increasing complexity. The height, pitch, and the aspect ratio of the textures are further regulated by the conditions of the applied electric field. The proposed approach will open new opportunities for optical and electrical applications.

Original languageEnglish
Number of pages7
JournalAdvanced Science
VolumeXX
Issue numberXX
DOIs
Publication statusAccepted/In press - 24 Feb 2021

Keywords

  • dielectric structuring
  • dynamic surface topographies
  • imprinted polymer flow pattern
  • liquid crystal polymer

Fingerprint Dive into the research topics of 'Translating 2D Director Profile to 3D Topography in a Liquid Crystal Polymer'. Together they form a unique fingerprint.

Cite this