Transient deformation and swelling of paper by aqueous co-solvent solutions

C.-L. Wong, S. Wang, S. Karimnejad, M.G. Wijburg, H. Mansouri, A.A. Darhuber (Corresponding author)

Research output: Contribution to journalArticleAcademicpeer-review

2 Citations (Scopus)
81 Downloads (Pure)


Inkjet printing inks frequently contain polar liquids of low volatility such as glycerol or poly(ethylene glycols) in addition to the main solvent water. The deposition of these liquids on paper sheets induces swelling of the cellulose fibers, which leads to an overall, anisotropic deformation of the sheet. We characterized the corresponding strain components by means of a grid projection method and white light interferometry. For pure water, most of the hydroexpansion strain vanishes again after drying is complete. However, for aqueous solutions of non-volatile co-solvents, a large fraction of the deformation persists after the water has evaporated. Because swelling occurs only after liquid enters the cellulose fibers, monitoring the dynamics of expansion provides insight into the pore-fiber distribution of co-solvents. The corresponding timescales of pore-fiber transport strongly depend on the co-solvent concentration, as a sufficient quantity of water is needed to plasticize the fiber walls.

Original languageEnglish
Pages (from-to)1202-1211
Number of pages10
JournalSoft Matter
Issue number6
Publication statusPublished - 14 Feb 2023

Bibliographical note

Funding Information:
This work is part of an Industrial Partnership Programme (i43-FIP) of the Foundation for Fundamental Research on Matter (FOM), which is part of the Netherlands Organisation for Scientific Research (NWO). This research programme is co-financed by Canon Production Printing, University of Twente, Eindhoven University of Technology, and the “Topconsortia voor Kennis en lnnovatie (TKI)” allowance from the Ministry of Economic Affairs. The authors thank Nicolae Tomozeiu, Herman Wijshoff and Louis Saes of Canon Production Printing for the fruitful cooperation.


Dive into the research topics of 'Transient deformation and swelling of paper by aqueous co-solvent solutions'. Together they form a unique fingerprint.

Cite this