TY - BOOK
T1 - Transient analysis of the Erlang A model
AU - Knessl, C.
AU - Leeuwaarden, van, J.S.H.
PY - 2014
Y1 - 2014
N2 - We consider the Erlang A model, or $M/M/m+M$ queue, with Poisson arrivals, exponential service times, and $m$ parallel servers, and the property that waiting customers abandon the queue after an exponential time. The queue length process is in this case a birth-death process, for which we obtain explicit expressions for the Laplace transforms of the time-dependent distribution and the first passage time. These two transient characteristics were generally presumed to be intractable. Solving for the Laplace transforms involves using Green's functions and contour integrals related to hypergeometric functions. Our results are specialized to the $M/M/\infty$ queue, the $M/M/m$ queue, and the $M/M/m/m$ loss model. We also obtain some corresponding results for diffusion approximations to these models.
AB - We consider the Erlang A model, or $M/M/m+M$ queue, with Poisson arrivals, exponential service times, and $m$ parallel servers, and the property that waiting customers abandon the queue after an exponential time. The queue length process is in this case a birth-death process, for which we obtain explicit expressions for the Laplace transforms of the time-dependent distribution and the first passage time. These two transient characteristics were generally presumed to be intractable. Solving for the Laplace transforms involves using Green's functions and contour integrals related to hypergeometric functions. Our results are specialized to the $M/M/\infty$ queue, the $M/M/m$ queue, and the $M/M/m/m$ loss model. We also obtain some corresponding results for diffusion approximations to these models.
M3 - Report
T3 - arXiv
BT - Transient analysis of the Erlang A model
PB - s.n.
ER -