TY - JOUR
T1 - Transaction selection policy in tier-to-tier SBSRS by using Deep Q-Learning
AU - Arslan, Bartu
AU - Ekren, Banu Yetkin
PY - 2023
Y1 - 2023
N2 - This paper studies a Deep Q-Learning (DQL) method for transaction sequencing problems in an automated warehousing system, Shuttle-based Storage and Retrieval System (SBSRS), in which shuttles can move between tiers flexibly. Here, the system is referred to as tier-to-tier SBSRS (t-SBSRS), developed as an alternative design to tier-captive SBSRS (c-SBSRS). By the flexible travel of shuttles between tiers in t-SBSRS, the number of shuttles in the system may be reduced compared to its simulant c-SBSRS design. The flexible travel of shuttles makes the operation decisions more complex in that system, motivating us to explore whether integration of a machine learning approach would help to improve the system performance. We apply the DQL method for the transaction selection of shuttles in the system to attain process time advantage. The outcomes of the DQN are confronted with the well-applied heuristic approaches: first-come-first-serve (FIFO) and shortest process time (SPT) rules under different racking and numbers of shuttles scenarios. The results show that DQL outperforms the FIFO and SPT rules promising for the future of smart industry applications. Especially, compared to the well-applied SPT rule in industries, DQL improves the average cycle time per transaction by roughly 43% on average.
AB - This paper studies a Deep Q-Learning (DQL) method for transaction sequencing problems in an automated warehousing system, Shuttle-based Storage and Retrieval System (SBSRS), in which shuttles can move between tiers flexibly. Here, the system is referred to as tier-to-tier SBSRS (t-SBSRS), developed as an alternative design to tier-captive SBSRS (c-SBSRS). By the flexible travel of shuttles between tiers in t-SBSRS, the number of shuttles in the system may be reduced compared to its simulant c-SBSRS design. The flexible travel of shuttles makes the operation decisions more complex in that system, motivating us to explore whether integration of a machine learning approach would help to improve the system performance. We apply the DQL method for the transaction selection of shuttles in the system to attain process time advantage. The outcomes of the DQN are confronted with the well-applied heuristic approaches: first-come-first-serve (FIFO) and shortest process time (SPT) rules under different racking and numbers of shuttles scenarios. The results show that DQL outperforms the FIFO and SPT rules promising for the future of smart industry applications. Especially, compared to the well-applied SPT rule in industries, DQL improves the average cycle time per transaction by roughly 43% on average.
KW - SBSRS
KW - automated warehousing
KW - deep reinforcement learning
KW - DQN
KW - agent-based simulation
KW - logistics
KW - Logistics
UR - http://www.scopus.com/inward/record.url?scp=85143423454&partnerID=8YFLogxK
U2 - 10.1080/00207543.2022.2148767
DO - 10.1080/00207543.2022.2148767
M3 - Article
SN - 0020-7543
VL - 61
SP - 7353
EP - 7366
JO - International Journal of Production Research
JF - International Journal of Production Research
IS - 21
ER -