Towards an evaluation framework for process mining algorithms

A. Rozinat, A.K. Alves De Medeiros, C.W. Günther, A.J.M.M. Weijters, W.M.P. Aalst, van der

Research output: Book/ReportReportAcademic

876 Downloads (Pure)

Abstract

Although there has been a lot of progress in developing process mining algorithms in recent years, no effort has been put in developing a common means of assessing the quality of the models discovered by these algorithms. In this paper, we outline elements of an evaluation framework that is intended to enable (a) process mining researchers to compare the performance of their algorithms, and (b) end users to evaluate the validity of their process mining results. Furthermore, we describe two possible approaches to evaluate a discovered model (i) using existing comparison metrics that have been developed by the process mining research community, and (ii) based on the so-called k-fold-cross validation known from the machine learning community. To illustrate the application of these two approaches, we compared a set of models discovered by different algorithms based on a simple example log.
Original languageEnglish
Place of PublicationEindhoven
PublisherTechnische Universiteit Eindhoven
Number of pages20
ISBN (Print)978-90-386-1120-4
Publication statusPublished - 2007

Publication series

NameBETA publicatie : working papers
Volume224
ISSN (Print)1386-9213

Fingerprint

Dive into the research topics of 'Towards an evaluation framework for process mining algorithms'. Together they form a unique fingerprint.

Cite this