TY - JOUR
T1 - Time-resolved experimental and computational study of two-photon laser-induced fluorescence in a hydrogen plasma
AU - Heijden, van der, H.W.P.
AU - Boogaarts, M.G.H.
AU - Mazouffre, S.
AU - Mullen, van der, J.J.A.M.
AU - Schram, D.C.
PY - 2000
Y1 - 2000
N2 - The time profile of the fluorescence light emission of atomic hydrogen in an expanding plasma beam after pulsed excitation with a nanosecond laser is studied, both experimentally and computationally. Ground state H atoms in an expanding Ar-H cascaded arc plasma are excited to the p=3 level using two-photon laser excitation at 205 nm. The resulting fluorescence is resolved in time with a fast photomultiplier tube to investigate the occurrence of quenching. A fluorescence decay time of (10+or-0.5) ns is measured under all circumstances, indicating that there is a complete l mixing of the p=3 sublevels. A time-resolved collisional radiative model is developed to model pulsed laser induced fluorescence for a large range of plasma parameters. The model calculations agree well with the experimental results over the entire range of conditions and indicate that two-photon LIF can strongly influence the local electron and ion densities, resulting in a "self-quenching" of the laser-induced H fluorescence
AB - The time profile of the fluorescence light emission of atomic hydrogen in an expanding plasma beam after pulsed excitation with a nanosecond laser is studied, both experimentally and computationally. Ground state H atoms in an expanding Ar-H cascaded arc plasma are excited to the p=3 level using two-photon laser excitation at 205 nm. The resulting fluorescence is resolved in time with a fast photomultiplier tube to investigate the occurrence of quenching. A fluorescence decay time of (10+or-0.5) ns is measured under all circumstances, indicating that there is a complete l mixing of the p=3 sublevels. A time-resolved collisional radiative model is developed to model pulsed laser induced fluorescence for a large range of plasma parameters. The model calculations agree well with the experimental results over the entire range of conditions and indicate that two-photon LIF can strongly influence the local electron and ion densities, resulting in a "self-quenching" of the laser-induced H fluorescence
U2 - 10.1103/PhysRevE.61.4402
DO - 10.1103/PhysRevE.61.4402
M3 - Article
SN - 1063-651X
VL - 61
SP - 4402
EP - 4409
JO - Physical Review E: Statistical, Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
JF - Physical Review E: Statistical, Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
IS - 4
ER -