TY - JOUR
T1 - Time-frequency analysis of accelerometry data for detection of myoclonic seizures
AU - Nijsen, T.M.E.
AU - Aarts, R.M.
AU - Cluitmans, P.J.M.
AU - Griep, P.A.M.
PY - 2010
Y1 - 2010
N2 - Four time-frequency and time-scale methods are studied for their ability of detecting myoclonic seizures from accelerometric data. Methods that are used are: the short-time Fourier transform (STFT), the Wigner distribution (WD), the continuous wavelet transform (CWT) using a Daubechies wavelet, and a newly introduced model-based matched wavelet transform (MOD). Real patient data are analyzed using these four time-frequency and time-scale methods. To obtain quantitative results, all four methods are evaluated in a linear classification setup. Data from 15 patients are used for training and data from 21 patients for testing. Using features based on the CWT and MOD, the success rate of the classifier was 80%. Using STFT or WD-based features, the classification success is reduced. Analysis of the false positives revealed that they were either clonic seizures, the onset of tonic seizures, or sharp peaks in "normal" movements indicating that the patient was making a jerky movement. All these movements are considered clinically important to detect. Thus, the results show that both CWT and MOD are useful for the detection of myoclonic seizures. On top of that, MOD has the advantage that it consists of parameters that are related to seizure duration and intensity that are physiologically meaningful. Furthermore, in future work, the model can also be useful for the detection of other motor seizure types.
AB - Four time-frequency and time-scale methods are studied for their ability of detecting myoclonic seizures from accelerometric data. Methods that are used are: the short-time Fourier transform (STFT), the Wigner distribution (WD), the continuous wavelet transform (CWT) using a Daubechies wavelet, and a newly introduced model-based matched wavelet transform (MOD). Real patient data are analyzed using these four time-frequency and time-scale methods. To obtain quantitative results, all four methods are evaluated in a linear classification setup. Data from 15 patients are used for training and data from 21 patients for testing. Using features based on the CWT and MOD, the success rate of the classifier was 80%. Using STFT or WD-based features, the classification success is reduced. Analysis of the false positives revealed that they were either clonic seizures, the onset of tonic seizures, or sharp peaks in "normal" movements indicating that the patient was making a jerky movement. All these movements are considered clinically important to detect. Thus, the results show that both CWT and MOD are useful for the detection of myoclonic seizures. On top of that, MOD has the advantage that it consists of parameters that are related to seizure duration and intensity that are physiologically meaningful. Furthermore, in future work, the model can also be useful for the detection of other motor seizure types.
U2 - 10.1109/TITB.2010.2058123
DO - 10.1109/TITB.2010.2058123
M3 - Article
C2 - 20667813
SN - 1089-7771
VL - 14
SP - 1197
EP - 1203
JO - IEEE Transactions on Information Technology in Biomedicine
JF - IEEE Transactions on Information Technology in Biomedicine
IS - 5
ER -