Abstract
We introduce new tightly-secure authenticated key exchange (AKE) protocols that are extremely efficient, yet have only a constant security loss and can be instantiated in the random oracle model both from the standard DDH assumption and a subgroup assumption over RSA groups. These protocols can be deployed with optimal parameters, independent of the number of users or sessions, without the need to compensate a security loss with increased parameters and thus decreased computational efficiency. We use the standard “Single-Bit-Guess” AKE security (with forward secrecy and state corruption) requiring all challenge keys to be simultaneously pseudo-random. In contrast, most previous papers on tightly secure AKE protocols (Bader et al., TCC 2015; Gjøsteen and Jager, CRYPTO 2018; Liu et al., ASIACRYPT 2020) concentrated on a non-standard “Multi-Bit-Guess” AKE security which is known not to compose tightly with symmetric primitives to build a secure communication channel. Our key technical contribution is a new generic approach to construct tightly-secure AKE protocols based on non-committing key encapsulation mechanisms. The resulting DDH-based protocols are considerably more efficient than all previous constructions.
Original language | English |
---|---|
Title of host publication | Advances in Cryptology – EUROCRYPT 2021 - 40th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Proceedings |
Editors | Anne Canteaut, François-Xavier Standaert |
Pages | 117-146 |
Number of pages | 30 |
DOIs | |
Publication status | Published - 2021 |
Publication series
Name | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Volume | 12696 LNCS |
ISSN (Print) | 0302-9743 |
ISSN (Electronic) | 1611-3349 |
Bibliographical note
DBLP License: DBLP's bibliographic metadata records provided through http://dblp.org/ are distributed under a Creative Commons CC0 1.0 Universal Public Domain Dedication. Although the bibliographic metadata records are provided consistent with CC0 1.0 Dedication, the content described by the metadata records is not. Content may be subject to copyright, rights of privacy, rights of publicity and other restrictions.Funding
Acknowledgments. Tibor Jager was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme, grant agreement 802823. Eike Kiltz was supported by the BMBF iBlockchain project, the EU H2020 PROMETHEUS project 780701, DFG SPP 1736 Big Data, and the DFG Cluster of Excellence 2092 CASA. Doreen Riepel was supported by the Deutsche Forschungsgemeinschaft (DFG) Cluster of Excellence 2092 CASA. Sven Schäge was supported by the German Federal Ministry of Education and Research (BMBF), Project DigiSeal (16KIS0695) and Huawei Technologies Düsseldorf, Project vHSM.
Keywords
- Authenticated key exchange
- Forward security
- Non-committing encryption
- Tightness